An Overview on the Evidence of Physical Activity Interventions in the Health of Individuals with Head and Neck Cancer: Literature Systematic Review

DOI: https://doi.org/10.32635/2176-9745.RBC.2023v69n1.2652

Um Panorama sobre as Evidências de Intervenções de Atividade Física na Saúde de Indivíduos com Câncer de Cabeça e Pescoço: Revisão Sistemática da Literatura

Um Panorama de las Evidencias de Intervenciones de Actividad Física en la Salud de Individuos con Cáncer de Cabeza y Cuello: Revisión Sistemática de la Literatura

Patrícia Severo dos Santos Saraiva¹; Juliana da Silveira²; Jéssica Amaro Moratelli³; Kettlyyn Hames Alexandre⁴; Mirella Dias⁵; Adriana Coutinho de Azevedo Guimarães⁶

ABSTRACT

Introduction: Head and neck cancer is considered a global public health problem, which arises in aesthetically and functionally critical areas. The practice of physical exercise has been considered one of the significant and effective non-pharmacological strategies to minimize the physical and psychological consequences. Objective: To analyze the evidence of physical activity interventions in the physical and psychological health of individuals with head and neck cancer. Method: A systematic review was conducted blindly and independently, from March to May 2021, according to the PRISMA guidelines. The search was performed in the following databases: PubMed Central®, Cochrane Library; Web of Science, Scopus, ScienceDirect. Results: Of the 515 selected studies, 15 were included in this systematic review with a total of 670 participants aged between 18 and 76 years old. The studies included aerobic exercises, endurance, mobility, stretching, strengthening, and yoga. Conclusion: Evidence proves that physical activity interventions performed with individuals with head and neck cancer may be beneficial in the treatment and physical/psychological health of this population. This study may help new researches considering the detailed information described previously regarding the interventions applied, in addition to discussing the most used instruments with this public and indicating the modalities that are being safely performed. It is suggested that more randomized trials be conducted to obtain more concise results.

Key words: head and neck neoplasm/psychology; exercise therapy/psychology; exercise.

RESUMEN

Introducción: El cáncer de cabeza y cuello es considerado un problema de salud pública a nivel mundial que se presenta en áreas estética y funcionalmente críticas. La práctica de ejercicio físico está siendo considerada una de las estrategias no farmacológicas significativas y eficaces para minimizar las consecuencias físicas y psicológicas. Objetivo: Analizar la evidencia de intervenciones de actividad física sobre la salud física y psicológica de individuos con cáncer de cabeza y cuello. Método: Revisión sistemática ciega e independiente de marzo a mayo de 2021, según las guías PRISMA. La búsqueda se realizó en las siguientes bases de datos: PubMed Central®, Biblioteca Cochrane; Web of Science, Scopus, ScienceDirect. Resultados: Entre los 515 estudios seleccionados, 15 fueron incluidos en esta revisión sistemática con un total de 670 participantes con edades entre 18 y 76 años. Los estudios incluyeron ejercicios aeróbicos, resistencia, movilidad, estiramiento, fortalecimiento e ioga. Conclusión: La evidencia comprova que las intervenciones de actividad física realizadas con individuos con cáncer de cabeza y cuello pueden ser beneficiosas en el tratamiento y en la salud física/psicológica de esta población. Este estudio puede ayudar a futuras investigaciones considerando la información detallada descrita anteriormente sobre las intervenciones aplicadas, así como discutir los instrumentos más utilizados con este público e indicar las modalidades que se están realizando de forma segura. Se sugieren más ensayos aleatorios para obtener resultados más concisos.

Palabras clave: neoplasias de cabeza y cuello/psicología; terapia por ejercicio/psicología; ejercicio físico.
INTRODUCTION

Head and neck cancer belongs to a group of malignant neoplasms of the upper aerodigestive tract and the face located in the regions of the oral cavity, paranasal sinuses, salivary glands, pharynx, larynx, and thyroid that appears in critical areas and may produce changes in highly visible and socially significant portions1, often aggressive due to location and treatment2. As a consequence, survivors face specific physical, psychosocial problems, and symptoms related to the disease and its treatment such as oral dysfunction, shoulder mobility, facial lymphedema in addition to swallowing and speech problems that seriously compromise the health-related quality-of-life3-5.

Guidelines recommend that cancer survivors practice regular physical activities, performing at least 150 to 300 minutes of moderate-intensity aerobic physical activity or at least 75 to 150 minutes of vigorous aerobic physical activity. Another option would be an equivalent combination of moderate and vigorous activity during the week for substantial health benefits6. As a complementary therapy, physical exercise is considered one of the significant non-pharmacological strategies in the treatment of the disease, acting directly in physical and psychological health7, contributing positively to the physiological function of the individual, associated with the improvement of quality-of-life4-5,8. Therefore, it was verified in the literature that one of the first studies that addressed interventions involving physical exercises and physical activity directed to patients with head and neck cancer was a randomized clinical trial by McNeely et al.9, who evaluated the effects of progressive resistance exercise training on shoulder dysfunction, followed by Lønbro et al.10 who investigated the effect of progressive resistance training, followed by Samuel et al.11 which sought to evaluate the effects of physical training on functional capacity and quality-of-life.

Since then, few intervention studies involving this population have been performed, although literature reveals the existence of benefits in the plans of early physical exercises, aside from being viable and safe interventions with these patients12-14. However, the effectiveness of physical activity interventions related to this population is still considered to be inadequately understood13. Thus, the objective of this systematic review was to analyze the evidence of physical activity interventions in the physical and psychological health of individuals with head and neck cancer.

METHOD

This systematic review follows the guidelines of the Preferred Reporting Items for Systematic Reviews – PRISMA15, it was registered in PROSPERO (International Prospective Register of Systematic Reviews)16 - CRD42021265414, and its guiding question formed by the PICO acronym is: What is the evidence of physical activity and/or physical exercise and body practices interventions in the physical and psychological health of adult individuals during and after head and neck cancer treatment?

Electronic researches were performed using the descriptors referred to in Chart 1 on five databases: PubMed Central16; Cochrane Library; - main collection, Web of Science; Scopus and ScienceDirect. All titles and abstracts found in the electronic search were analyzed through the application Rayyan and manually by two reviewers blindly and independently, in the period from 03/23/2021 to 05/16/2021. Reference lists of all relevant articles were examined to identify other eligible studies. The terms ‘physical activity’ and ‘exercise’ were used as a search strategy, with the intention of expanding the location of the greatest possible number of studies.

<table>
<thead>
<tr>
<th>Terms</th>
<th>Descriptors</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 Cancer</td>
<td>Head and neck cancer</td>
</tr>
<tr>
<td>#2 Intervention</td>
<td>Physical activity OR Physical exercise OR Body practices</td>
</tr>
<tr>
<td>#3 Study</td>
<td>Randomized clinical trial</td>
</tr>
<tr>
<td>Combination</td>
<td>#1 AND #2 OR #3 AND</td>
</tr>
</tbody>
</table>

The researchers members of the Leisure and Physical Activity Research Laboratory - LAPLAF/CNPq, performed the searches according to the eligibility criteria. The discrepancies were solved by a third author.

The eligibility criteria of the studies were defined according to the PICO acronym considering the population, intervention, comparison, and study design (Chart 2). The eligible studies for this review were: a) randomized clinical trials; b) performed in adults (18 years); c) of both sexes; d) in treatment and post-treatment of head and neck cancer; e) published in English, Spanish and Portuguese in the last 10 years; f) studies that should investigate interventions with physical activities and/or physical exercise in the treatment of head and neck cancer, with summary and full text available during the period of 03/23/2021 to 05/16/2021. The information about the research is described by the reviewers in Figure 1, presented in the flowchart, with a description of the search, selection, inclusion, and exclusion process. The articles were initially classified and analyzed by title and the ones that did not meet the research criteria were excluded. The following action was reading abstracts,
considering that articles in disagreement or duplicated were also removed. After the screening, the articles were read in full, so that the selection process of the studies would be completed.

After searching studies for the systematic review, those addressing the effects of physical activity and/or physical exercise interventions on physical health outcomes (hemoglobin, platelet count, functional capacity, physical fitness, body composition, neck and shoulder function, nutritional status, shoulder range of motion, joint mobility of upper limbs and pain) and psychological health (quality-of-life, anxiety, depression, fatigue, fear, restlessness, nervousness, sleep disorders, and concentration) in individuals with head and neck cancer were included.

According to the World Health Organization (WHO)17, physical activity is defined as any body movement provided by skeletal muscles, thus generating energy expenditure. Regarding the complement to cancer therapies, physical exercise is clinically important to treatment, since it is accepted as a safe and effective method16. Therefore, at least 150 minutes of physical activity per week with moderate to vigorous intensity are recommended for cancer patients18.

Complex treatments for head and neck cancer have the potential to cause significant limitations, including pain, fatigue, and dysphagia19. Moreover, they also result in a decrease in the physical function of the upper limbs, a reduction in nutrition and communication, as well as dissatisfaction with body image and restriction of daily tasks20.

Head and neck cancer is considered one of the most psychologically traumatic cancers, due to the importance connected to the appearance of the head and neck21. Therefore, this type of cancer has the highest rates of major depressive disorders and it is associated with high levels of suffering22.

The investigation and discussion of the results were conducted through the extraction of data referring to

Chart 2. Criteria for inclusion and exclusion of studies according to PICOS, 2021

<table>
<thead>
<tr>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>P Participants</td>
<td>Adult individuals undergoing treatment and post-treatment of head and neck cancer, of both sexes; older than 18 years old</td>
</tr>
<tr>
<td>I Intervention</td>
<td>Any practice of physical activity, physical exercises, or body practices (dance, yoga, Pilates, and others)</td>
</tr>
<tr>
<td>C Comparison</td>
<td>Control group. Intervention group</td>
</tr>
<tr>
<td>O Outcome</td>
<td>Effects of physical activity, and/or physical exercise and body practices on the physical and psychological health of patients with head and neck cancer</td>
</tr>
<tr>
<td>S Study</td>
<td>Randomized controlled trials</td>
</tr>
</tbody>
</table>

Figure 1. Flowchart of the study selection strategy, according to the PRISMA model, 2020

Records identified from: PubMed Central® (n=130) Cochrane Library (n=315) Web of Science (n=5) Scopus (n=15) ScienceDirect (n=50)

Articles removed before screening: Duplicate records removed (n=101)

Articles screened (n=414) Articles excluded (n=373)

Articles searched for retrieval (n=41) Articles not retrieved (n=0)

Articles assessed for eligibility (n=41) Full-text articles excluded, with reasons (n=26) Other study designs (n=8) Other study modalities (n=12) Other outcomes (n=6)

Articles included in the review (n=15) Reports of articles included (n=15)
the authors, year of publication, journal, the number of citations according to the Web of Science database (up to May 16, 2021), the number of databases, search period and followed up by the Checklist of 27 PRISMA items (yes or no). Next, it was obtained the objective, total sample size, age of the participants, intervention groups, control group, place of study, physical and psychological health investigated, characteristics of physical activity intervention and/or physical exercise, duration, number and frequency of sessions, intensity and duration of the intervention.

The Cochrane Collaboration tool \(^{23}\) was used to evaluate the methodological quality of the studies. The following criteria were evaluated: (1) generation of random sequence, (2) allocation sequence concealment, (3) masking of participants and researchers, (4) selective reports, (5) masking of results evaluation, and (6) incomplete results data. The researchers' understanding in this systematic review was evaluated as low, unclear, or high risk of bias.

RESULTS

There were 515 articles in the first search in the database, 130 in PubMed Central\(^{8}\), 315 in Cochrane Library, 5 in Web of Science, 15 in Scopus and 50 in ScienceDirect. After sorting the title and abstract, 490 articles were excluded because they did not meet the inclusion criteria, they were namely cross-references, were characterized by another type of study, animal studies, to investigate individuals with other diseases, under 18 years old, and without physical activity and/or physical exercise intervention. After completing the reading, 26 articles were excluded, totaling 15 articles\(^{4,10,12,14,24-33}\) included in this systematic review (Figure 1).

The study participants were all diagnosed with head and neck cancer in the laryngeal regions\(^{4,10,12,24,25,27-31,33}\), oropharynx\(^{4,12,28}\), tongue\(^{29,31,33}\), mouth\(^{30,12,27,30}\), retromolar trigone\(^{29}\), epiglottis\(^{29}\), amygdala\(^{29}\), pharynx\(^{10,12,27,30}\), nasopharynx\(^{33}\), thyroid\(^{25,31}\), parotid gland\(^{31}\), hypopharynx\(^{31,33}\), piriform sinus\(^{31}\), paranasal sinuses\(^{27}\), and salivary glands\(^{27}\). Five studies did not specify the region\(^{11,14,24,26,32}\).

The age of the participants of the studies varied according to the inclusion criterion: over 18 years\(^{10,27,28,30,33}\), from 18 to 75 years\(^{25}\), over 20 years old\(^{32}\), from 20 to 80 years\(^{29}\), from 32 to 76 years\(^{24}\) and six studies brought only the average age of the participants\(^{4,11,12,14,26,31}\).

The sample size of the studies varied between men and women, being 494 men and 176 women, totaling 670 individuals, the study of Samuel et al.\(^{4}\) investigated the largest number of participants (n= 148 individuals) and Su et al.\(^{29}\), the smallest number (n= 37 individuals).

Regarding the stage of the disease, eleven studies had the characteristic of their participants in the primary stage of cancer\(^{4,10,12,24,25,27-31,33}\) and the other four didn’t bring that information\(^{11,14,26,32}\).

Two studies brought participants who were submitted to the interventions receiving chemoradiotherapy\(^{4,11}\), three of them after head and neck cancer surgery\(^{14,29,31}\), one after radical neck dissection surgery\(^{26}\), three after radiotherapy\(^{10,28,33}\), one after chemotherapy\(^{32}\), during adjuvant treatment\(^{12}\), one after adjuvant treatment\(^{30}\), one with complete adjuvant therapy treatment\(^{24}\), one on medication with thyroid hormone after thyroidectomy\(^{25}\) and one after receiving primary radiotherapy and surgery with adjuvant treatment with or without chemotherapy\(^{27}\).

The year of publication of the studies was 2013\(^{10,11}\), 2015\(^{24,28}\), 2016\(^{33}\), 2017\(^{12,29}\), 2018\(^{31}\), 2019\(^{32}\) and \(2020\(^{14,26,27,30}\).

The studies were developed in Asia, in India\(^{4,11,26}\), Taiwan\(^{29,32}\), and South Korea\(^{25,31}\); in Europe, in Denmark\(^{10,12,28,30}\), in Germany\(^{14}\) and ending in North America in Canada\(^{24,27,33}\).

Among the studies, only seven were registered in clinical trials platforms, in the Clinical Trials\(^{10,12,28,30,33}\), German Clinical Trials\(^{14}\) and Government of India clinical trial records\(^{26}\).

It was observed that fourteen studies used control group, one study received, in the control group, recommendations to practice walking for 10 minutes, 5 days a week\(^{4}\); two received no intervention other than conventional care (cancer follow-up visits)\(^{30,32}\), one received standard clinical physiotherapy\(^{34}\), two received standard hospital care\(^{11,12}\), one received usual care offered by an oncologist and other health professionals as well as mouth opening exercises\(^{29}\), two received home exercise program\(^{29,31}\), two received 12 weeks of guidance only for self-directed activities, followed by 12 more weeks of intervention (resistance training)\(^{30,35}\), one received exercises of muscular energy techniques\(^{26}\), one received dynamic resistance exercises compatible with training volume\(^{38}\), one received usual care, with postural exercises and strengthening\(^{24}\) and finally a study provided no instruction\(^{25}\).

The interventions were: aerobic exercises (walking)\(^{4,11,25,33}\), endurance exercise\(^{4,11,12,32}\), physical therapies (including aerobic, anaerobic, and stretching therapies)\(^{32}\), yoga\(^{30}\), range of motion exercises, massage, stretching, and strengthening\(^{26,33}\); standard clinical physiotherapy exercises (mobilization movements)\(^{14}\); home exercise program with resistive training\(^{25,33}\).
progressive endurance training; exercises of stretching, postural and strengthening with maximum load and repetitions; eccentric strength training with overload and neuromuscular electrical stimulation; exercises for jaw mobility.

The period of interventions ranged from 10 days; 4 weeks; 5 to 6 weeks (during the period of radiotherapy treatment); 6 weeks; 8 weeks; 11 weeks; 12 weeks; 24 weeks; 12 weeks and a study did not specify.

The frequency proposed for interventions varied once a week, twice a week; and two and three times a week; three times a week; three to five days a week; five days a week; 30 sessions over 12 weeks; 3rd and 5th post-operative day and two studies did not bring this information.

The duration of each session of the speeches ranged from 60 minutes; 40 to 50 minutes; 40 minutes; 30 to 40 minutes; 45 minutes and ten studies did not specify the duration of the sessions.

The intensity of the interventions was light to moderate; moderate; vigorous; and nine studies did not report the intensity.

The intensity was evaluated using the Borg Rating of Perceived Exertion Scale, based on the American College of Sports Medicine, with the calculation of maximum frequency and seven studies did not specify.

Among the professionals who performed the activities, there are physical therapists; nutritionists; clinical support with an exercise physiologist or personal trainer; exercise specialist for cancer population; support of physiotherapists and occupational therapists; doctors and nurses; academics and unsupervised professionals; four studies were conducted at home and did not provide specifications on the professionals involved and a study brought no information.

The interventions were performed in a hospital; home; and hospital; physiotherapy department; commercial training center facilities; university and three studies failed to report.

The outcomes evaluated were divided into physical and psychological health. All studies were proposed to evaluate participants in the baseline and post-intervention periods.

The physical outcomes evaluated in the clinical trial studies of this systematic review were functional capacity, hemoglobin and platelet count, range of motion, pain, body composition, neck and shoulder function, cardiovascular functions, physiological responses, respiratory function, skeletal muscle functions, digestive tract functions, nutritional status, neuromuscular function, trismus, aspiration and penetration, xerostomia (dry mouth), muscle strength, level of physical activity and immunological function.

The psychological outcomes evaluated in the clinical trial studies of this systematic review were quality-of-life, depression, anxiety, fear, restlessness, nervousness, sleep disorders and concentration.

Therefore, in this section, the characteristics of the studies included in this review, as shown in chart 3 and 4 will be described.

The studies presented a higher risk of bias about “masking participants and team” and “other sources of bias” and most of them were classified as high and uncertain because they did not offer sufficient data for the evaluation. Nevertheless, it should be noted that the category that presented a low risk of bias was a “random sequence generation” where it was considered low for almost all studies. This item corresponds to the method used to generate the allocation sequence of participants randomly.

DISCUSSION

The physical health variables investigated in the studies included in this review were hemoglobin, platelet count, functional capacity, physical fitness, body composition, neck and shoulder function, nutritional status, range of movement, joint mobility, and pain, however, the most prominent in the studies were functional capacity, neck and shoulder function, joint mobility and range of movement, which corroborate the findings of Lynch et al. Studies show that aerobic exercises such as walking combined with resisted exercises such as endurance training are presented in most of the studies since they have improved functional capacity, mobility, and cardiopulmonary capacity predominantly. Aerobic and endurance exercises alone improved muscle strength, physical fitness, nutritional status, shoulder range of movement, pain, and quality-of-life.

Exercises for jaw joint mobility also stood out in this review, since they relate to the needs associated with cancer location. Other interventions, as flexibility, stretching, and
Chart 3. Details of the selected studies concerning the participants and the control group/comparison group, 2021

<table>
<thead>
<tr>
<th>Author/year/country</th>
<th>Total sample size</th>
<th>Age</th>
<th>Control group/Comparison group</th>
<th>Moment of treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Samuel et al., 2019 India</td>
<td>148 participants (131 men and 17 women)</td>
<td>Average age 52 years old</td>
<td>Control group: received physical treatment with recommendations of walking physical activity of 10 minutes, 5 days a week</td>
<td>Submitted to chemoradiotherapy</td>
</tr>
<tr>
<td>2 Su et al., 2017 Taiwan</td>
<td>37 participants (3 women and 34 men)</td>
<td>Average age 48 years old</td>
<td>Comparison group: HPB group: home program</td>
<td>Submitted to intervention after surgery</td>
</tr>
<tr>
<td>3 Kristensen et al., 2020 Denmark</td>
<td>71 participants (46 men and 25 women)</td>
<td>Average age 64 years old</td>
<td>Control group: did not receive intervention beyond standard care</td>
<td>Treated with radiotherapy</td>
</tr>
<tr>
<td>4 Do et al., 2018 South Korea</td>
<td>40 participants</td>
<td>-</td>
<td>Comparison group: Home-based group: Daily home exercises, with suggested times and through photos</td>
<td>Submitted to intervention after surgery</td>
</tr>
<tr>
<td>5 Yen et al., 2019 Taiwan</td>
<td>72 participants (15 women and 57 men)</td>
<td>Average age 53 years old</td>
<td>Control group: a sedentary group that received information on general health</td>
<td>Participants submitted to intervention after chemotherapy</td>
</tr>
<tr>
<td>6 Steegmann et al., 2020 Germany</td>
<td>69 participants (36 men and 33 women)</td>
<td>Average age 63 years old</td>
<td>Control group: received standard clinical physiotherapy</td>
<td>Postoperative</td>
</tr>
<tr>
<td>7 Capozzi et al., 2016 Canada</td>
<td>60 participants (49 men and 11 women);</td>
<td>Average age 56 years old</td>
<td>Comparison Group: 12-Week Late Lifestyle Group (DLI)</td>
<td>After radiotherapy</td>
</tr>
<tr>
<td>8 Hajdú et al., 2017 Denmark</td>
<td>69 participants (57 men and 12 women)</td>
<td>Average age 63 years old</td>
<td>Control group: received standard hospital care</td>
<td>Radiotherapy treatment</td>
</tr>
<tr>
<td>9 Samuel et al., 2013 India</td>
<td>48 participants (42 men and 6 women)</td>
<td>Average age 52 years old</td>
<td>Control group: received standard hospital care</td>
<td>During Chemoradiotherapy</td>
</tr>
<tr>
<td>10 Lønbro et al., 2013 Denmark</td>
<td>41 participants</td>
<td>Average age 55 years old</td>
<td>Comparison group: Group (ED): Progressive resistance training (maximum repetitions of leg press, knee extension, hamstring flexion, chest pressure, abdominal, back extension) after the beginning of the first 12 weeks</td>
<td>After radiotherapy</td>
</tr>
<tr>
<td>11 McNeely et al., 2015 Canada</td>
<td>52 participants (44 eligible) (67% men)</td>
<td>Average age 52 years old</td>
<td>Comparison group: TP group: usual care and postural exercises, strengthening exercises with light weights and elastic bands</td>
<td>Complete treatment of adjuvant therapy</td>
</tr>
<tr>
<td>12 Kim et al., 2018 South Korea</td>
<td>43 participants (7 men and 36 women)</td>
<td>Average age 50 years old</td>
<td>Control group: no intervention or instruction was provided</td>
<td>Treatment with thyroid hormone medication after thyroidectomy</td>
</tr>
</tbody>
</table>

to be continued
Chart 3. continue

<table>
<thead>
<tr>
<th>Author/year/country</th>
<th>Total sample size</th>
<th>Age</th>
<th>Control group/Comparison group</th>
<th>Moment of treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Thomas et al., 2020 India</td>
<td>48 participants (37 men and 9 women)</td>
<td>Average age 53 years old</td>
<td>Comparison group: Received exercises of muscular energy techniques (METS)</td>
<td>They underwent radical neck dissection surgery</td>
</tr>
<tr>
<td>14 Lavigne et al., 2020 Canada</td>
<td>22 participants (14 men and 8 women)</td>
<td>Average age 52.9 years old</td>
<td>Comparison group: CST group: involving dynamic resistance exercises compatible with the training volume</td>
<td>They received primary radiotherapy and surgery with adjuvant treatment with or without chemotherapy.</td>
</tr>
<tr>
<td>15 Høgdal et al., 2015 Denmark</td>
<td>97 participants (70 men and 27 women)</td>
<td>Average age 58 years old</td>
<td>Control group: usual care, which consisted of treatments and advice offered by the oncologist and other health professionals, including mouth opening exercises for approximately 10 minutes</td>
<td>Radiation therapy started</td>
</tr>
</tbody>
</table>

Chart 4. Details of selected studies about the characteristics of the interventions, physical and psychological health investigated, outcomes and instruments, 2021

<table>
<thead>
<tr>
<th>Author/year</th>
<th>Intervention group</th>
<th>Total duration (number of weeks/number of sessions)</th>
<th>Frequency</th>
<th>Session time</th>
<th>Intensity</th>
<th>Physical and psychological health investigated</th>
<th>Main outcomes</th>
<th>Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Samuel et al., 2019</td>
<td>Aerobic exercises and active resistance exercises</td>
<td>11 weeks</td>
<td>5 days a week</td>
<td>-</td>
<td>Mild to moderate</td>
<td>Physical health: Functional capacity, hemoglobin, and platelet count. Psychological health: Quality-of-life and fatigue</td>
<td>There was a significant improvement in functional capacity (p<0.001), quality-of-life (p<0.001), and prevention of worsening fatigue (p<0.001), in the exercise group</td>
<td>Medical Outcomes Study 36-item (Short-Form Health Survey (SF-36)), Fatigue NCCN scale, 6 min Walking Test, Hemoglobin and Platelet Count</td>
</tr>
<tr>
<td>2 Su et al., 2017</td>
<td>Physical therapies, including aerobic, anaerobic, and stretching therapies</td>
<td>12 weeks</td>
<td>3-5 times a week</td>
<td>60 minutes</td>
<td>Moderate</td>
<td>Physical health: Functional capacity, shoulder range of motion, pain</td>
<td>The Home Program and Outpatient Physiotherapy can improve the functional capacity and range of motion of the shoulder. FACT H&N (p = .074), VAS of shoulder pain (p = .677), 6MWT (p = .677), and shoulder ROM (p = .145 for flexion; p = .383 for abduction)</td>
<td>Functional Assessment of Cancer Therapy - Head and Neck (FACT H & N) Visual Analog Scale (VAS), 6-minute walk test (6MWT), and Shoulder Range of Motion (SRM)</td>
</tr>
</tbody>
</table>

to be continued
<table>
<thead>
<tr>
<th>Author/year</th>
<th>Intervention group</th>
<th>Total duration (number of weeks/number of sessions)</th>
<th>Frequency</th>
<th>Session time</th>
<th>Intensity</th>
<th>Physical and psychological health investigated</th>
<th>Main outcomes</th>
<th>Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kristensen et al., 2020</td>
<td>Restorative yoga (balance or endurance training)</td>
<td>12 weeks</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Physical health: Bodyweight and physical functions Psychological health: Quality-of-life, anxiety and depression</td>
<td>Had a positive effect physical function and quality-of-life. Quality-of-life ("Role functioning": p = 0.041; "Speech problems": p = 0.040; "Pain": p = 0.048) in the intervention group</td>
<td>Quality-of-life Questionnaire (SD-5L(EQ-5D-5L)), Quality-of-life Questionnaire (EORTC QLQ-C30), Quality-of-life Questionnaire (EORTC QLQ-H&N 3), Quality-of-life Questionnaire (EQ-5D-5L), Analog visual scale (VAS) Hospital Anxiety and Depression Scale (HADS)</td>
</tr>
<tr>
<td>Do et al., 2018</td>
<td>Hospital-based group: Range of motion exercises, massage, stretching, and strengthening exercises</td>
<td>4 weeks</td>
<td>3 times a week</td>
<td>40 minutes</td>
<td>-</td>
<td>Physical health: Neck and shoulder function Psychological health: Quality-of-life</td>
<td>There was a significant difference in neck deficiency index and neck extension and rotation in the hospital-based group compared to the home-based group. (p < 0.005)</td>
<td>Quality-of-life Questionnaire (EORTC QLQ-C30), the Quality-of-life Questionnaire (EORTC QLQ-H & N), Neck Disability Index Questionnaire (NDI), Digital inclinometer, and numerical classification scale (NRS)</td>
</tr>
<tr>
<td>Yen et al., 2019</td>
<td>Aerobic and endurance exercises</td>
<td>8 weeks</td>
<td>3 times a week</td>
<td>40 - 50 minutes</td>
<td>Moderate</td>
<td>Physical health: Body composition, cardiovascular physiological responses</td>
<td>Exercise can help promote cardiopulmonary fitness and exercise ability (p < 0.05) in the intervention group</td>
<td>Walk test of 6 minutes</td>
</tr>
<tr>
<td>Steegmann et al., 2020</td>
<td>Individualized combinations with mobilization exercises</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Physical health: Neurological functions, cardiovascular functions, respiratory functions, musculoskeletal functions, digestive tract functions. Psychological health: Fatigue, fear, restlessness, nervousness, sleep disorders, concentration</td>
<td>Patients with head and neck cancer therapy can benefit from an autonomous and individualized exercise plan. Fatigue (p = 0.048), digestive problems (p = 0.009)</td>
<td>-</td>
</tr>
<tr>
<td>Author/year</td>
<td>Intervention group</td>
<td>Total duration (number of weeks/number of sessions)</td>
<td>Frequency</td>
<td>Session time</td>
<td>Intensity</td>
<td>Physical and psychological health investigated</td>
<td>Main outcomes</td>
<td>Instruments</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------</td>
<td>--</td>
<td>-----------</td>
<td>--------------</td>
<td>-----------</td>
<td>---</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Capozzi et al., 2016</td>
<td>Exercises performed at home (resistance training)</td>
<td>12 weeks</td>
<td>2 times a week</td>
<td>-</td>
<td>Moderate</td>
<td>Physical health: Body composition, physical fitness, and nutritional status Psychological health: Quality-of-life and depression</td>
<td>There was a slight improvement in quality-of-life, physical fitness, and nutritional status</td>
<td>Godin’s leisure physical activity questionnaire, scale, absorptiometry, dynamometer, 6-minute walk test, Wells-Flexometer, Quality-of-life (FACT)-Anemia FACT-22 (FHNSI-22), Epidemiologic Studies Depression Scale (CES-D), Global Subjective Evaluation (PG-SGA)</td>
</tr>
<tr>
<td>Hajdú et al., 2017</td>
<td>Swallowing exercises and progressive endurance training</td>
<td>-</td>
<td>2-3 times a week</td>
<td>-</td>
<td>-</td>
<td>Physical health: nutritional status body composition, mouth opening (trismus), physical function, pain, xerostomia Psychological health: Fatigue, quality-of-life, depression, and anxiety</td>
<td>Exercise according to the protocol is tolerable and feasible. No significant differences were seen between participants and decliners in any of the variables (p > 0.05)</td>
<td>Penetration aspiration score, sit test, and lift 30 sec., Bioimpedance, Range of Motion Scale, Functional Oral Intake Scale (FOIS), PS-ECOG Scale, Quality-of-life Questionnaire (EORTC QLQ-C30), (EORTC QLQ H&N 35) Short form-36 Questionnaire, Dysphagia Inventory (MDADI), Swallowing Screening (EAT-10), Numerical Rating Scale (NRS), Major Depression Inventory (MDI), Symptom Checklist (SCL-92)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author/ year</th>
<th>Intervention group</th>
<th>Total duration (number of weeks/ number of sessions)</th>
<th>Frequency</th>
<th>Session time</th>
<th>Intensity</th>
<th>Physical and psychological health investigated</th>
<th>Main outcomes</th>
<th>Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Samuel et al., 2013</td>
<td>Aerobic exercises and active resistance exercises</td>
<td>6 weeks</td>
<td>5 times a week</td>
<td>-</td>
<td>-</td>
<td>Physical health: Functional capacity. Psychological health: Quality-of-life</td>
<td>A walking and active exercise program is safe and well-tolerated by patients with head and neck cancer. SF36 for the exercise group (4.8; P<0.05) the 6MWD (P<0.001) in the exercise group. When 6MWD and SF36 were compared between the groups, there was a statistically significant difference (P<0.001) seen after six weeks.</td>
<td>Health status questionnaire (SF-36), 6-minute walk test</td>
</tr>
<tr>
<td>10 Lønbro et al., 2013</td>
<td>Group (EE): Progressive resistance training</td>
<td>24 weeks</td>
<td>30 sessions over 12 weeks (each group)</td>
<td>-</td>
<td>-</td>
<td>Physical health: Lean body mass, maximum muscle strength, functional performance Psychological health: Quality-of-life</td>
<td>Progressive resistance training effectively increased lean body mass and muscle strength (p<0.05).</td>
<td>Dual Energy X-rays (DEXA), dynamometry, Full Speed Gait, 30 s Maximum Chair Lift, Ladder Climb, Maximum Arm Curves 30 seconds, Quality-of-life (EORTC QLQ-C30)</td>
</tr>
<tr>
<td>11 McNeely et al., 2015</td>
<td>PRET Group: usual care and exercises of stretching, postural exercises, exercises of strengthening with load, and maximum repetitions</td>
<td>12 months</td>
<td>3 times a week</td>
<td>-</td>
<td>Vigorous</td>
<td>Physical health: Mobility of shoulders, level of physical activity. Psychological health: Quality-of-life</td>
<td>Resistance exercise training can be a care intervention and support option for head and neck cancer survivors. Dissection-related functioning (p=0.021) and better QOL (p=0.011) than those who did not.</td>
<td>Shoulder Pain and Disability Index (SPADI), Fatigue and Quality-of-life, Neck Dissection Impairment Index (NDII), Functional Assessment of Cancer Therapy - General (FACT-G), FACT-Anemia Scale (FACT-An)</td>
</tr>
<tr>
<td>12 Kim et al., 2018</td>
<td>Home exercises (through videos on mobile phones, with aerobic exercise instruction, resistance exercises, and flexibility exercises)</td>
<td>12 months</td>
<td>3-5 times a week</td>
<td>30-40 minutes</td>
<td>Moderate</td>
<td>Physical health: Immune function. Psychological health: Fatigue, anxiety, quality-of-life</td>
<td>The home exercise program is effective in reducing fatigue and anxiety, improving quality-of-life, and increasing immune function. In the intervention QV (p<0.05); the experimental group were significantly less fatigued or anxious (p<0.01).</td>
<td>Brief Fatigue Inventory (BFI), Hospital Anxiety-Depression Scale (HADS-A), Quality-of-life Questionnaire Core 30 (EORTC QLQ-C30)</td>
</tr>
</tbody>
</table>

Chart 4. continuation
Yoga were also applied, but without significant results for this population.

Among the psychological health variables, it is highlighted the quality-of-life, depression, anxiety, and fatigue, but others were also investigated as fear, restlessness, nervousness, sleep disorders, and concentration. As well as in physical health, the interventions that stood out most in the improvement of these symptoms were also aerobic exercises and resistance combined, which showed a significant improvement in the quality-of-life, anxiety, and fatigue. Thus, the findings in the literature reinforce that combined exercises (aerobic and resistance exercises) are efficient in other types of cancers, such as breast cancer, which improved quality-of-life and reduced fatigue effects, corroborating the data found in this review.

Yoga also improved the quality-of-life of head and neck cancer patients, similarly to other studies for individuals with breast cancer, such as Jong et al.,35 and Dhruva et al.,36, plus improvement in anxiety,36 quality of sleep,36,37 and reduction of fatigue.,38,39

In this systematic review, the analysis of the study by Lavigne et al.,27, indicated that the exercise intervention with the aid of neuromuscular electrical stimulation, besides the increase of the quality-of-life, brought benefits in fatigue reduction, as well as other studies which addressed the same intervention to individuals...
with head and neck cancer resulting in improved swallowing, prevention of dysphagia, improvement of shoulder functions, in addition to pain reduction, proving effective for shoulder rehabilitation with significant improvements in quality-of-life.

Most of the studies did not provide information about the time of the sessions and the intensity of the exercises, making it difficult to perceive their influence in the interventions and being a limitation for their replication. Bull et al. state in their research that, performing 150-300 minutes of activity with moderate to vigorous intensity with a frequency of 3 to 5 days a week brings benefits to the physical and psychological health of individuals with cancer, meeting the studies in this review, where those who brought a more significant improvement for their participants were those who had the highest frequency (from 3 to 5 days per week) of physical activity and/or physical exercise.

In this sense, the practice of exercise offers benefits before, during, and after the treatment of cancer, in its various types and for various deficiencies related to it, which meets the results of this review, since the participants were mostly in the process of treatment or after treatment for head and neck cancer.

Some interventions were home-based without direct guidance. The assisted interventions counted with the presence of physical therapists and exercise professionals or without expertise in cancer patients. In addition to home, the interventions were applied at hospitals/clinics, and training centers. It cannot be stated whether or not this factor influenced the results, because some studies, even with the help of a professional, did not obtain the expected benefits. Moreover, this meets the findings of the study by Cantwell et al., which shows that there are some barriers health professionals have in promoting physical exercise programs for cancer patients, however, they play an important role in motivating individuals to adopt positive lifestyle changes.

Stout et al. show that exercise when supervised produces great benefits if compared to unsupervised. On the other hand, Su et al., Capozzi et al., Samuel et al., Hajdu et al., and Kim et al. studies applied home interventions, therefore, it can be implied that if the patient follows the appropriate guidelines, good results can be achieved. Considering that interventions with aerobic and resistance exercises are the most used for this population, with positive effects on quality-of-life and physical health in general which validates the findings of Lynch et al., that also revealed that cancer head and neck survivors adhered to these activities in their routines.

According to the National Cancer Institute (INCA), there is evidence that physical activity has a beneficial effect for people with cancer as it contributes to hormonal regulation, increased immunity and decrease oxidative stress from fat in addition to carcinogenesis. There were also findings on the safety of physical activity for people with cancer, which were deemed as safe and well tolerated during and after treatment for various types of cancer.

There was a consensus among the studies regarding the choice of the instrument for verification of physical health, wherein in a great part, the 6-minute Walk Test (6MWT) was used and considered an effective, low-cost and easy to apply tool in the evaluation of the functional capacity of healthy individuals or individuals with chronic diseases. For psychological health, the instruments validated for individuals with head and neck cancer that stood out the most were the EORTC QLQ-C30, EORTC H&N 35, FACT H & N, and S-36. These tools are also suitable for assessing the quality-of-life, aiming to understand the true impact of head and neck cancer in this population, enabling a better therapeutic choice, thus assisting in rehabilitation and psychosocial support.

As physical activity and/or exercise interventions cannot be blinded, as participants are aware of the type of intervention they are receiving as well as they need to understand the activity they are developing. Due to this, this item in the methodological quality of the studies had a high risk of bias, consequently, the study may be influenced by changes in the conduct of the research team or participants.

The information on intensity in the studies analyzed was scarce or non-existent, as well as volume and frequency, which decreases the quality since intensity is a primary variable to define the effectiveness of an intervention and meets the results of a systematic review of exercises in the cancer literature (2005-2017), where moderate and vigorous-intensity exercises may be equally better compared to low-intensity exercise interventions.

The reduced number of studies and protocols involving physical activity for the head and neck cancer population, as well as the lack of information on intensity, duration and frequencies of interventions, which may hinder the replicability of future interventions are some of the study limitations like the use of different instruments to verify the same variables which may bring unequal results.

CONCLUSION

It can be stated that physical activity interventions in individuals with head and neck cancer improve the symptoms evaluated in this population, but even so, there is a gap in the literature on that matter, especially those investigating psychological health. Therefore, it appears to be evident that further randomized controlled and
high-quality studies need to be carried out to determine the type, intensity, frequency, and ideal moment of physical activity interventions, as well as its impact on cancer prognosis. It is also considered that few studies of physical interventions and HNC survivors were found, with a limited number of samples, making methodological evaluation difficult.

However, when considering the use of these interventions for clinical use, there is a gap in including therapeutic treatments in complementation of the traditional ones, corroborating the findings in this review, indicating that the practice of physical activity can contribute to the improvement of the health of cancer survivors potentially mitigating the likely side effects of pharmacological therapies and possibly achieving a better response to the treatment as a whole.

The present study is strong in its assertions as it may contribute to future investigations considering the information about interventions practice. Moreover, it suggests that psychological variables should be further studied due to possible complications caused by the disease. It is beneficial as well for health professionals and the scholar community making clear the relevance of physical exercise and physical activity. More studies are necessary on that matter.

CONTRIBUTIONS

Patrícia Severo dos Santos Saraiva and Juliana da Silveira contributed to the study design, acquisition, analysis and interpretation of the data, wording and critical review. Jéssica Amaro Moratelli, Kettlyn Hames Alexandre, Mirella Dias and Adriana Coutinho de Azevedo Guimarães contributed to the study wording and critical review. They approved the final version to be published.

DECLARATION OF CONFLICT OF INTERESTS

There is no conflict of interests to declare.

FUNDING SOURCES

This study was funded in part by the Coordination for the Improvement of Higher Education Personnel (Capes) – Brazil. Finance Code 0001.

REFERENCES

Received in 14/4/2022
Aprovado em 13/9/2022

Associate-Editor: Fernando Lopes Tavares de Lima. Orcid ID: https://orcid.org/0000-0002-8618-7608
Scientific-Editor: Anke Bergmann. Orcid ID: https://orcid.org/0000-0002-1972-8777