Fisiopatologia e tratamento da leucemia mielóide crônica: novos conceitos e perspectivas

Autores

  • Bernardo Garicochea Médico Assistente. Faculdade de Medicina. Universidade de São Paulo (USP). São Paulo (SP), Brasil
  • Pedro Enrique Dorlhíac-Llacer Diretor Técnico-Científico da Fundação Hemocentro de São Paulo. São Paulo (SP), Brasil

DOI:

https://doi.org/10.32635/2176-9745.RBC.1996v42n2.2894

Palavras-chave:

Leucemia Mielóide Crônica, Cromossomo Philadelphia, Translocação BCR/ABL, Transplante De Medula Óssea, Interferon-Alfa

Resumo

Descobertas recentes sobre a atividade do gene quimérico BCR/ABL têm auxiliado na elucidação de diversos mecanismos envolvidos na gênese e progressão da leucemia mieloide crônica (LMC). Apesar de a LMC ser ainda, uma doença incurável para os pacientes que não podem submeter-se a um transplante alogênico de medula óssea, a sobrevida geral tem aumentado progressivamente, devido especialmente a medidas capazes de prolongar a fase crônica. A técnica de reação da polimerase em cadeia (PCR) para a detecção do gene quimérico BCR/ABL tem sido um teste bastante valioso para a identificação de casos Philadelphia negativos que apresentam o rearranjo genético ao nível molecular e para a detecção de doença residual mínima, especialmente em indivíduos transplantados. Novas formas de tratamento devem traduzir-se em maior sobrevida nos próximos anos quando utilizadas em estágios precoces da doença: transplante autólogo de células-tronco com células mobilizadas e coletadas após quimioterapia em altas doses, o uso de interferon e a terapia gênica. O interferon já é a droga de escolha para o tratamento da maioria dos pacientes. O transplante autólogo é um procedimento promissor que tem sido aplicado por vários centros como uma alternativa ao transplante alogênico. Os resultados de diferentes estratégias de terapia gênica têm sido desapontadores até o momento, mas a melhoria tecnológica neste campo do conhecimento será extremamente interessante para o tratamento da LMC, considerando-se o papel biológico central do gene BCR/ABL nas células malignas.

Downloads

Não há dados estatísticos.

Referências

Nowell, P.C.; Flungerford, D. A. - A minute chromosone in human chronic granulocytic leukemia, Science, 132: 1497, 1960.

Rowley, J.D. - A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature, 243: 290-293, 1973.

Heisterskamp, N.; Stephenson, J.R.; Groffen, J.; Hansen, P.; De Klein, F.; Bartram, C.R.; Grosveld, G. - Localization of the C-ABL oncogene adjacent to a translocation breakpoint in chronic myelocytic leukemia. Nature, 306: 239-242, 1983. DOI: https://doi.org/10.1038/306239a0

Heisterkamp, N.; Jenster, G.; TenHoeve, J.; Zovich, D.; Patengale, P.K.; Groffen, J. - Acute leukemia in bcr/abl transgenic mice. Nature, 344: 251-253, 1990. DOI: https://doi.org/10.1038/344251a0

Guerrasio, A.; Martinelli, G.; Saglio, G.; Rosso, C.; Zaccaria A.; Rosti, G.; Testoni, N.; Ambrosetti, A.; Izzi, T.; Sessarego, M.; Frassoni, F.; Gasparini, P.; Chiamenti. A.; Di Bartolomeo, A.; Pignatti, P.F. - Minimal residual disease status in transplanted chronic myelogenous leukemia patients: low incidence of polymerase chain reaction positive cases among 48 long disease-free subjects who received unmanipulated allogenic bone marrow transplants. Leukemia 6: 507-512, 1992.

Arnold, R.; Janssen, J.W.G.; Heize, B.; Bunjes, D.; Herteistein, B.; Wiesneth, M.; KubanekB.; Fleimpel H.; Bartram, C.R. - Influence of graft-versus-host disease on the eradication of minimal residual leukemia detected by polymerase chain reaction in chronic myeloid leukemia patients after bone marrow transplantation. Leukemia, 7: 47-751, 1993.

Yinon, B.N.; Daley, G.Q.; Mes-Masson, A.M.; Witte, O.N.; Baltimore, D. -The chronic myelogenous leukemia-specific p210 protein is the product of the BCR/ABL hybrid gene. Science, 233: 212-214, 1986. DOI: https://doi.org/10.1126/science.3460176

Clarkson, B.; Strife, A. - Linkage of proliferative and maturational abnormalities in chronic myelogenous leukemia and relevance to treatment. Leukemia, 7: 1683-1721, 1993.

McGahon, A.; Bissonette, R.; Schmitt, M.; Cotter, K.M.; Green, D.R.; Cotter, T.G. - BCR-ABL mantains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood, 83: 1179-1187,1994. DOI: https://doi.org/10.1182/blood.V83.5.1179.1179

Wetzler M.; Talpaz M.; Yee, G.; Stass, A.S.;Van Etten,R.A.;Andreef,M.;Goodacre, A. M.; Kleine, H-D.; Mahadevia, R-K.; Kuzrock, R. - Cell cycle-related shifts in subcellular localization of BCR: Association with mitotic chromosomes and with heterochromatin. Blood, 84: 1391, 1994.

Witte, O.N. - Role of the BCR-ABL oncogene in human leukemia: fifteenth Richard and Hinda Rosenthal Foundation Award Lecture. CancerRes, 53: 485, 1993.

Goga, A.; McLaughlin,J.; Afar, D.E.Fl.; Saffran, D.C.; Witte, O.N. – Altemative signals to RAS for hematopoietic transformation hy the BCR-ABL oncogene. Cell, 82.-981, 1995. DOI: https://doi.org/10.1016/0092-8674(95)90277-5

Fialkow, P.J.; Gartler, S.M.; Yoshida, A. - Clonal origin in chronic myelocytic leukemia in man. Proc natl Acad Sci USA, 58: 1468,1987. DOI: https://doi.org/10.1073/pnas.58.4.1468

Fialkow, P.J.; Martin P.J.; Najfeld, V.; Penfold, G.F.; Jacohsen, R.J.; Hansen, J.A. - Evidence for a multistep pathogenesis for chronic myeloid leukemia. Blood, 58: 158, 1981. DOI: https://doi.org/10.1182/blood.V58.1.158.bloodjournal581158

Goldman, J.M.; Shiota, F.;Th’ng,K.H. - Circulating granulocytes and erythroid progenitor cells in chronic granulocyt leukemia. Br J Haematol, 46: 7, 1980. DOI: https://doi.org/10.1111/j.1365-2141.1980.tb05929.x

Duhé, I.D.; Kalousek, D.; Coulomhel, I. - Cytogenetic studies in early myeloid progenitor compartments in Phl - positive chronic myeloid leukemia. II. Long term culture reveals the persistence of Ph I -negative progenitors in treated as well as newly diagnosed pa-tients. B/ooJ, 63: 1172, 1984. DOI: https://doi.org/10.1182/blood.V63.5.1172.1172

Fialkow, P.J.; Jacohson, R.J.; Papayannopoulou, T. - chronic myelocytic leukemia. Clonal origin in a stem cell common to the granulocyte, eyrthrocyte, platelet and monocyte/macrophage. Am J Med, 63: 125, 1977. DOI: https://doi.org/10.1016/0002-9343(77)90124-3

Garicochea, B.; Chase, A.; Lazaridou, A.; Goldman, J.M. - T-lymphocytes in CML: No evidence of the BCR/ABL fusion gene detected hy fluorescence in situ hybridization. Leukemia, 8: 1197, 1994.

Bernstein, I.; Singer, J.; Smith, F.; Andrews, R.; Flowers, D.; Petersens, J.; Steinmann, N.; Najfeld, V.; Savage, D.; Fruchtman, S.; Arlin, Z.; Fialkow, P. - Differences in the frequency of normal and clonal precursors of colony-forming cells in chronic myelogenous leukemia and acute myelogenous leucemia. Blood, 79: 1811, 1992. DOI: https://doi.org/10.1182/blood.V79.7.1811.bloodjournal7971811

Pichert, G.; Alyea, E.P.; Soiffer, R.J.; Roy, D.C.; Ritz, J. - Persistence of myeloid progenitor cells expressing BCR/ABL mRNA after allogenic bone marrow transplantation for chronic myelogenous leukemia. Blood, 84: 2109, 1994. DOI: https://doi.org/10.1182/blood.V84.7.2109.bloodjournal8472109

Serra, A.; Guerrasio, A.; Gaidano, G.; Rosso, C.; Rege-Camhrin, G.; Petroni, D.; Mazza, U.; Saglio, G. – Molecular defects associated with the acute phase CML. Leukemia Lymphoma, II (supl I): 25, 1993. DOI: https://doi.org/10.3109/10428199309047858

Ahuja, H.G.;Bar-Eli,M.;Advani,S.H.; Benshimol, S.; Cline, M.J. - Alterations in the p53 gene and the clonal evolution of the hlast crisis of chronic myelocytic leukemia. Proc Natl Acad Sci USA, 86: 6783, 1989. DOI: https://doi.org/10.1073/pnas.86.17.6783

Sill, H.; Goldman, J.M.; Cross, N.C.P. - Homozygous deletions of the p 16 tumor-supressor gene are associated with lymphoid transformation of chronic myeloid leukemia. Blood, 85: 2013. DOI: https://doi.org/10.1182/blood.V85.8.2013.bloodjournal8582013

Nakai, H.; Misawa, S.; Horiike, S.; Taniwake, M.; Seriu, T.; Shimazaki, C.; Fujii, H.; Maekawa, T.; Furukawa, T.; Ahe, T.; Ishizaki, K.; Kashima, K. - Analysis of mutations and expression of GAP-related domain of neurofihromatosis type 1 (NFl) gene in the progression of chronic myelogenous leukemia. Leukemia, 8: 1994, 1027.

Wetzler, M.; Talpaz, M.; Estrov, Z.; Kurzrock, R. - CML mechanisms of disease initiation and progression. Leukemia Lymphoma, 11:1993, suppl 1,47. DOI: https://doi.org/10.3109/10428199309047863

Bendit, 1.; Garicochea B.; Manzella, L.; Dorlhiac-Llacer, P.E.; Chamone, D.A.F.; Bydlowski, S.P. – Neurofibromatosis type 1 (NFl) mutational analysis by PCR-SSCP in chronic myelogenous leukemia in chronic phase and blast crisis. Acta Haematol, 93: 180, 1995.

Sawyers, C.L.; Callahan, W.; Witte, O.N. - Dominant negative MYC blocks transformation by ABL oncogenes. Cell, 70: 901, 1992. DOI: https://doi.org/10.1016/0092-8674(92)90241-4

Alimena, G.; Brandt, L.; Dallapiccola, B.; Mitelman, F.; Milsson, P.G. - Secondary chromosome changes in chronic myeloid leukemia: Relation to treatment. Cancer Genet Gytogenet, 1: 79, 1979. DOI: https://doi.org/10.1016/0165-4608(79)90013-X

Dobrovic, A.; Trainor, K.J.; Morley, A.A. - Detection of the molecular abnormality in chronic myeloid leukemia by use of the polimerase chain reaction. Blood, 72: 2063, 1988. DOI: https://doi.org/10.1182/blood.V72.6.2063.2063

Rowley, J.D. - A consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature, 243: 290, 1973. DOI: https://doi.org/10.1038/243290a0

Kantarjian, H.M.; Deisseroth, A.; Kurzrock, R.; Estrov, E.; Talpaz, M. - Chronic myelogenous leukemia: A concise update. Blood, 82: 691, 1993. DOI: https://doi.org/10.1182/blood.V82.3.691.691

Saglio, G.; Guerrasio, A.; Tassinari, A.; Ponzetto, C.; Zaccaria, A.; Testoni, P.; Celso, B.; Rege Cambrin, G.; Serra, A.; Pegoraro, L.; Avanzi, G.C.; Attadia, V.; Ealda, M.; Gavosto, E. - Variability of the molecular defects corresponding to the presence of a Philadelphia chromosome in human hematologic malignancies. Blood, 72: 1203, 1988. DOI: https://doi.org/10.1182/blood.V72.4.1203.bloodjournal7241203

Crist, W.; Carrol, A.; Shuster, J.; Jackson, J.; Head, D.; Borowitz, M.; Behm, F.; Link, M.; Steuber, P.; Ragah, A.; Hirt, A.; Brock, B.; Land, V.; Pullen, J. - Philadelphia chromosome positive childhood acute lymphoblastic leukemia: Clinical and cytogenetic characteristics and treatment outcome. A pediatric oncology group study. Blood, 76: 498, 1990. DOI: https://doi.org/10.1182/blood.V76.3.489.489

Hughes, T.P.; Morgan, G.J.; Martia, P.; Goldman, J.M. - Detection of residual leukemia after bone marrow transplant for chronic myeloid leukemia: Role of the polymerase chain reaction in predicting relapse. Blood, 77: 874, 1991. DOI: https://doi.org/10.1182/blood.V77.4.874.bloodjournal774874

Cross, N.C.P.; Feng, L.; Chase, A.; Bungey, J.; Hughes, T.P.; Goldman, J.M. - Competitive polymerase chain reaction to estimate the number of BCR/ABL transcripts in chronic myeloid leukemia patients after bone marrow transplantation. Blood, 82: 1929, 1993. DOI: https://doi.org/10.1182/blood.V82.6.1929.bloodjournal8261929

Baccarini, M. - For the Italian Cooperative Study Group on Chronic Myeloid Leukemia: Evaluating survival after allogenic bone marrow transplant for chronic myeloid leukemia in chronic phase: A comparison of transplant versus no-transplant in a cohort of 258 patients first seen in Italy between 1984 and 1986. Br J Haematol, 85: 292, 1993. DOI: https://doi.org/10.1111/j.1365-2141.1993.tb03169.x

Goldman, J.M. - The treatment of chronic myeloid leukaemia - much still to be achieved. J Intem Med 1994; 235: 289. DOI: https://doi.org/10.1111/j.1365-2796.1994.tb01078.x

Allen, S.L.; Coleman, M. - Terminal-phase chronic myelogenous leukemia: Approaches to treatment. Cancer Invesl, 3.-491, 1985. DOI: https://doi.org/10.3109/07357908509039811

Kantarjian, H.M.; Keating, M.J.; Estey, E.H.; 0’Brien, S.; Pierce, S.; Beran, M.; Koller, C.; Eeldman, E.; Talpaz, M. - Treatment of advanced stages of Philadelphia chromosome-positive chronic myelogenous leukemia with interferon-a and low-dose cytarabine. J Clin Oncol, 10: 772, 1992. DOI: https://doi.org/10.1200/JCO.1992.10.5.772

Hehlmann, R.; Heimpel, H.; Hasford, J.; Kolb, H.J.; Pralle, H.; Hossfeld, D.K. et al. - Randomized comparison of busulphan and hydroxyurea in chronic myelogenous leukemia: Prolongation survival by hydroxyurea. Blood, 82: 398, 1993. DOI: https://doi.org/10.1182/blood.V82.2.398.bloodjournal822398

Alimena, G.; Morra, E.; Lazzarino, M. et al. - Interferon Alpha 2b as therapy for Phl-positive chronic myelogenous leukemia. A study of 82 patients treated with intermittent or daily administration. Blood, 72.-642, 1988. DOI: https://doi.org/10.1182/blood.V72.2.642.642

Lee, M-S.; Kantarjian, H.; Talpaz, M.; Freireich, E.J.; Deissroth, A.; Trujillo, J.M.; Stass, S.A. - Detection of minimal residual disease by polimerase chain reaction in Philadelphia chromosome-positive myelogenous leucemia following interferon therapy. Blood, 79: 1920, 1992. DOI: https://doi.org/10.1182/blood.V79.8.1920.bloodjournal7981920

Ronnblom, L.E.; Alm, E.V.; Oberg, K.E. - Autoimmunity after alpha-interpheron therapy for malignant carcinoid tumors. Ann Intern Med, 115: 178, 1991. DOI: https://doi.org/10.7326/0003-4819-115-3-178

Hehlmann, R.; Heimpel, H.; Hasford, J.; Kolb, H.J.; Pralle, H.; Hossfeld, D.K.; Queisser, W.; Loffler, H.; Ho-chhaus. A.; Heinze, B.; Ansari, H. and the German CML study group - Randomized comparision of interferon-alfa with busulfan and hydroxyurea in chronic myelogenous leukemia (CML). Blood, 84: 382a, 1994. DOI: https://doi.org/10.1182/blood.V84.12.4064.bloodjournal84124064

Allan, N.C.; Richards, S.M.; Shepherd, P.C. A. - UK Medicai Research Council randomised, multicentric trial of interferon-alpha for chronic myeloid leukemia; improved survival irrespective of cytogenetic response. Lancet, 345: 1392, 1995. DOI: https://doi.org/10.1016/S0140-6736(95)92596-1

Butturini, A.; Keating, A. Goldman, J.M.; Gale, R.P. - Autotransplants in CML: Strategies and results. Lancet 1990; 335: 1255. DOI: https://doi.org/10.1016/0140-6736(90)91313-Y

Hughes, T.; Brito-Babapulle, F.; Marcus, R.E. - TransientPh-negativity after autografting with blood-derived stem-cells for patients with chronic myeloid leukemia in chronic phase. Bone Marrow Transplant, 4 (suppl 1): 51, 1989.

Eaves, C.; Udomsakdi, C.; Cashman, J.; Barnett, M.; Eaves, A. - The biology of normal and neoplastic stem-cells in CML. Leuk Kymph, ll(suppl 1): 245, 1993. DOI: https://doi.org/10.3109/10428199309047894

Downloads

Publicado

2022-10-03

Como Citar

1.
Garicochea B, Dorlhíac-Llacer PE. Fisiopatologia e tratamento da leucemia mielóide crônica: novos conceitos e perspectivas. Rev. Bras. Cancerol. [Internet]. 3º de outubro de 2022 [citado 11º de janeiro de 2025];42(2):93-104. Disponível em: https://rbc.inca.gov.br/index.php/revista/article/view/2894

Edição

Seção

ARTIGO ORIGINAL