Comparação Dosimétrica entre Técnicas de Planejamento de Radioterapia para Câncer de Mama Esquerda

Autores

DOI:

https://doi.org/10.32635/2176-9745.RBC.2023v69n3.4020

Palavras-chave:

radioterapia conformacional, radioterapia de intensidade modulada, neoplasias da mama, doses de radiação

Resumo

Introdução: A radioterapia é utilizada no tratamento de câncer de mama. No planejamento radioterápico, há formas de desenvolver o plano de tratamento, como a radioterapia 3D conformacional (3D-CRT), a radioterapia de intensidade modulada (IMRT) e a arcoterapia volumétrica modulada (VMAT). Objetivo: Comparar as doses nos órgãos de risco e no volume-alvo de tratamento com as diferentes técnicas de planejamento: 3D-CRT, IMRT, VMAT e VMAT modificada para o tratamento do câncer de mama em um phantom antropomórfico. Método: O plano de tratamento foi realizado no sistema Eclipse™ v.15.6 da Varian a partir de imagens de tomografia computadorizada adquiridas de phantom. A dose de prescrição estabelecida foi de 45 Gy em 25 frações de 1,8 Gy/dia. Resultados: Sobre a cobertura do volume do alvo planejado (PTV), as técnicas 3D-CRT (FILTRO e field-in-field – FIF) demonstram cobertura inferior comparada aos planos de IMRT e VMAT. Já o plano 3D-CRT-FIF apresenta maior homogeneidade comparado ao 3D-CRT-FILTRO. Para o pulmão contralateral, os planos de 3D-CRT (FIF, FILTRO) obtiveram restrições melhores em relação aos demais planos. Sobre a exposição cardíaca, os planos 3D-CRT (FIF, FILTRO) apresentaram maiores benefícios do que as técnicas IMRT, VMAT e VMAT modificada. Conclusão: As técnicas convencionais 3D-CRT (FIF, FILTRO) apresentaram menores doses nos órgãos de risco. Contudo, as técnicas IMRT e VMAT obtiveram melhor homogeneidade e conformidade da dose distribuída no PTV ao comparar as técnicas convencionais.

Downloads

Não há dados estatísticos.

Referências

Santos MO, Lima FCS, Martins LFL, et al. Estimativa de incidência de câncer no Brasil, 2023-2025. Rev Bras Cancerol. 2023;69(1):e-213700. doi: https://doi.org/10.32635/2176-9745.RBC.2023v69n1.3700 DOI: https://doi.org/10.32635/2176-9745.RBC.2023v69n1.3700

Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. Br J Radiol. 2022;95(1130):20211033. doi: https://doi.org/10.1259/bjr.20211033 DOI: https://doi.org/10.1259/bjr.20211033

Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321(3):288-300. doi: https://doi.org/10.1001/jama.2018.19323 DOI: https://doi.org/10.1001/jama.2018.19323

Citrin DE. Recent developments in radiotherapy. N Engl J Med. 2017;377(11):1065-75. doi: https://doi.org/10.1056/NEJMra1608986 DOI: https://doi.org/10.1056/NEJMra1608986

Poleszczuk J, Luddy K, Chen L, et al. Neoadjuvant radiotherapy of early-stage breast cancer and long-term disease-free survival. Breast Cancer Res. 2017;19(1):75. doi: https://doi.org/10.1186/s13058-017-0870-1 DOI: https://doi.org/10.1186/s13058-017-0870-1

Krug D. Adjuvant radiotherapy for breast cancer: more than meets the eye. Breast Care (Basel). 2020;15(2):109-11. doi: https://doi.org/10.1159/000506797 DOI: https://doi.org/10.1159/000506797

Balaji K, Subramanian B, Yadav P, et al. Radiation therapy for breast cancer: literature review. Med Dosim. 2016;41(3):253-7. doi: https://doi.org/10.1016/j.meddos.2016.06.005 DOI: https://doi.org/10.1016/j.meddos.2016.06.005

De Ruysscher D, Niedermann G, Burnet NG, et al. Radiotherapy toxicity. Nat Rev Dis Primers. 2019;5(1):13. doi: https://doi.org/10.1038/s41572-019-0064-5 DOI: https://doi.org/10.1038/s41572-019-0064-5

Cheng YJ, Nie XY, Ji CC, et al. Long-term cardiovascular risk after radiotherapy in women with breast cancer. J Am Heart Assoc. 2017;6(5):e005633. doi: https://doi.org/10.1161/JAHA.117.005633 DOI: https://doi.org/10.1161/JAHA.117.005633

Haussmann J, Corradini S, Nestle-Kraemling C, et al. Recent advances in radiotherapy of breast cancer. Radiat Oncol. 2020;15(1):71. doi: https://doi.org/10.1186/s13014-020-01501-x DOI: https://doi.org/10.1186/s13014-020-01501-x

Balaji K, Yadav P, BalajiSubramanian S, et al. Hybrid volumetric modulated arc therapy for chest wall irradiation: for a good plan, get the right mixture. Phys Med. 2018;52:86-92. doi: https://doi.org/10.1016/j.ejmp.2018.06.641

Finazzi T, Nguyen VT, Zimmermann F, et al. Impact of patient and treatment characteristics on heart and lung dose in adjuvant radiotherapy for left-sided breast cancer. Radiat Oncol. 2019;14(1):153. doi: https://doi.org/10.1186/s13014-019-1364-3 DOI: https://doi.org/10.1186/s13014-019-1364-3

Zhang Q, Liu J, AO N, et al. Secondary cancer risk after radiation therapy for breast cancer with different radiotherapy techniques. Sci Rep. 2020;10:1220. doi: https://doi.org/10.1038/s41598-020-58134-z DOI: https://doi.org/10.1038/s41598-020-58134-z

Brownlee Z, Garg R, Listo M, et al. Late complications of radiation therapy for breast cancer: evolution in techniques and risk over time. Gland Surg. 2018;7(4):371-8. doi: https://doi.org/10.21037/gs.2018.01.05

Fiorentino Alba, Gregucci F, Mazzola R, et al. Intensity-modulated radiotherapy and hypofractionated volumetric modulated arc therapy for elderly patients with breast cancer: comparison of acute and late toxicities. Radiol Med. 2019;124(4):309-14. doi: https://doi.org/10.1007/s11547-018-0976-2 DOI: https://doi.org/10.1007/s11547-018-0976-2

Bentzen SM, Constine LS, Deasy JO, et al. Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S3-9. doi: https://doi.org/10.1016/j.ijrobp.2009.09.040 DOI: https://doi.org/10.1016/j.ijrobp.2009.09.040

Mamounas EP, White JR, Bandos H, et al. NSABP B-51/RTOG 1304: Randomized phase III clinical trial evaluating the role of postmastectomy chest wall and regional nodal XRT (CWRNRT) and post-lumpectomy RNRT in patients (pts) with documented positive axillary (Ax) nodes before neoadjuvant chemotherapy (NC) who convert to pathologically negative Ax nodes after NC. J Clin Oncol. 2014;32(15 Suppl):TPS1141. doi: https://doi.org/10.1200/jco.2014.32.15_suppl.tps1141 DOI: https://doi.org/10.1200/jco.2014.32.15_suppl.tps1141

Hodapp N. Der ICRU-Report 83: Verordnung, Dokumentation und Kommunikation der fluenzmodulierten Photonenstrahlentherapie (IMRT). Strahlenther Onkol. 2012;188:97-100. doi: https://doi.org/10.1007/s00066-011-0015-x DOI: https://doi.org/10.1007/s00066-011-0015-x

Lopes JS, Leidens M, Razera RAZ, et al. Avaliação da homogeneidade e conformidade de dose em planejamentos de IMRT de próstata em radioterapia. Rev Bras Fis Med [Internet]. 2015 [acesso 2022 dez 20];9(3):34-7. Disponível em: https://www.rbfm.org.br/rbfm/article/view/342

Freedman GM, White JR, Arthur DW, et al. Accelerated fractionation with a concurrent boost for early stage breast cancer. Radiother Oncol. 2013;106(1):15-20. doi: https://doi.org/10.1016/j.radonc.2012.12.001 DOI: https://doi.org/10.1016/j.radonc.2012.12.001

Jin GH, Chen LX, Deng XW, et al. A comparative dosimetric study for treating left-sided breast cancer for small breast size using five different radiotherapy techniques: conventional tangential field, filed-in-filed, Tangential-IMRT, Multi-beam IMRT and VMAT. Radiat Oncol. 2013;8:89. doi: https://doi.org/10.1186/1748-717X-8-89 DOI: https://doi.org/10.1186/1748-717X-8-89

Aras S, İkizceli T, Aktan M. Dosimetric comparison of Three-Dimensional Conformal Radiotherapy (3D-CRT) and Intensity Modulated Radiotherapy Techniques (IMRT) with radiotherapy dose simulations for left-sided mastectomy patients. Eur J Breast Health. 2019;15(2):85-9. doi: https://doi.org/10.5152/ejbh.2019.4619 DOI: https://doi.org/10.5152/ejbh.2019.4619

Elzawawy S, Hammoury SI. Comparative dosimetric study for treating left sided breast cancer using three different radiotherapy techniques: tangential wedged fields, forward planned segmented filed, and IP-IMRT. Int J Med Phys Clin Eng Radiat Oncol. 2015;4(4):308-17. doi: https://doi.org/10.4236/ijmpcero.2015.44037 DOI: https://doi.org/10.4236/ijmpcero.2015.44037

Supakalin N, Pesee M, Thamronganantasakul K, et al. Comparision of different radiotherapy planning techniques for breast cancer after breast conserving surgery. Asian Pac J Cancer Prev. 2018;19(10):2929-34. doi: https://doi.org/10.22034/APJCP.2018.19.10.2929

Hu J, Han G, Lei Y, et al. Dosimetric comparison of three radiotherapy techniques in irradiation of left-sided breast cancer patients after radical mastectomy. Biomed Res Int. 2020;2020:7131590. doi: https://doi.org/10.1155/2020/7131590 DOI: https://doi.org/10.1155/2020/7131590

Chen SN, Ramachandran P, Deb P. Dosimetric comparative study of 3DCRT, IMRT, VMAT, Ecomp, and Hybrid techniques for breast radiation therapy. Radiat Oncol J. 2020;38(4):270-81. doi: https://doi.org/10.3857/roj.2020.00619 DOI: https://doi.org/10.3857/roj.2020.00619

Balaji K, Yadav P, BalajiSubramanian S, et al. Hybrid volumetric modulated arc therapy for chest wall irradiation: for a good plan, get the right mixture. Phys Med. 2018;52:86-92. doi: https://doi.org/10.1016/j.ejmp.2018.06.641 DOI: https://doi.org/10.1016/j.ejmp.2018.06.641

Banfill K, Giuliani M, Aznar M, et al. Cardiac toxicity of thoracic radiotherapy: existing evidence and future directions. J Thorac Oncol. 2021;16(2):216-27. doi: https://doi.org/10.1016/j.jtho.2020.11.002 DOI: https://doi.org/10.1016/j.jtho.2020.11.002

Naimi Z, Moujahed R, Neji H, et al. Cardiac substructures exposure in left-sided breast cancer radiotherapy: Is the mean heart dose a reliable predictor of cardiac toxicity? Cancer Radiother. 2021;25(3):229-36. doi: https://doi.org/10.1016/j.canrad.2020.09.003 DOI: https://doi.org/10.1016/j.canrad.2020.09.003

Rehman I, Kerndt CC, Rehman A. Anatomy, thorax, heart Left Anterior Descending (LAD) artery. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [updated 2023 Jan 27; cited 2023 Feb 10]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482375

Caron J, Nohria A. Cardiac toxicity from breast cancer treatment: can we avoid this? Curr Oncol Rep. 2018;20(8):61. doi: https://doi.org/10.1007/s11912-018-0710-1 DOI: https://doi.org/10.1007/s11912-018-0710-1

Mo H, Jazieh KA, Brinzevich D, et al. A review of treatment-induced pulmonary toxicity in breast cancer. Clin Breast Cancer. 2022;22(1):1-9. doi: https://doi.org/10.1016/j.clbc.2021.05.014 DOI: https://doi.org/10.1016/j.clbc.2021.05.014

Chao PJ, Lee HF, Lan JH, et al. Propensity-score-matched evaluation of the incidence of radiation pneumonitis and secondary cancer risk for breast cancer patients treated with IMRT/VMAT. Sci Rep. 2017;7(1):13771. doi: https://doi.org/10.1038/s41598-017-14145-x DOI: https://doi.org/10.1038/s41598-017-14145-x

Brownlee Z, Garg R, Listo M, et al. Late complications of radiation therapy for breast cancer: evolution in techniques and risk over time. Gland Surg. 2018;7(4):371-8. doi: https://doi.org/10.21037/gs.2018.01.05 DOI: https://doi.org/10.21037/gs.2018.01.05

Kundrát P, Remmele J, Rennau H, et al. Minimum breast distance largely explains individual variability in doses to contralateral breast from breast-cancer radiotherapy. Radiother Oncol. 2019;131:186-91. doi: https://doi.org/10.1016/j.radonc.2018.08.022 DOI: https://doi.org/10.1016/j.radonc.2018.08.022

Publicado

2023-07-13

Como Citar

1.
Prandi TMD, Zaias H, Silva C da, Müller J dos S, Blasius LP da S, Dorow PF. Comparação Dosimétrica entre Técnicas de Planejamento de Radioterapia para Câncer de Mama Esquerda. Rev. Bras. Cancerol. [Internet]. 13º de julho de 2023 [citado 14º de maio de 2024];69(3):e-074020. Disponível em: https://rbc.inca.gov.br/index.php/revista/article/view/4020

Edição

Seção

ARTIGO ORIGINAL