Comparação Dosimétrica entre Técnicas de Planejamento de Radioterapia para Câncer de Mama Esquerda
DOI:
https://doi.org/10.32635/2176-9745.RBC.2023v69n3.4020Palavras-chave:
radioterapia conformacional, radioterapia de intensidade modulada, neoplasias da mama, doses de radiaçãoResumo
Introdução: A radioterapia é utilizada no tratamento de câncer de mama. No planejamento radioterápico, há formas de desenvolver o plano de tratamento, como a radioterapia 3D conformacional (3D-CRT), a radioterapia de intensidade modulada (IMRT) e a arcoterapia volumétrica modulada (VMAT). Objetivo: Comparar as doses nos órgãos de risco e no volume-alvo de tratamento com as diferentes técnicas de planejamento: 3D-CRT, IMRT, VMAT e VMAT modificada para o tratamento do câncer de mama em um phantom antropomórfico. Método: O plano de tratamento foi realizado no sistema Eclipse™ v.15.6 da Varian a partir de imagens de tomografia computadorizada adquiridas de phantom. A dose de prescrição estabelecida foi de 45 Gy em 25 frações de 1,8 Gy/dia. Resultados: Sobre a cobertura do volume do alvo planejado (PTV), as técnicas 3D-CRT (FILTRO e field-in-field – FIF) demonstram cobertura inferior comparada aos planos de IMRT e VMAT. Já o plano 3D-CRT-FIF apresenta maior homogeneidade comparado ao 3D-CRT-FILTRO. Para o pulmão contralateral, os planos de 3D-CRT (FIF, FILTRO) obtiveram restrições melhores em relação aos demais planos. Sobre a exposição cardíaca, os planos 3D-CRT (FIF, FILTRO) apresentaram maiores benefícios do que as técnicas IMRT, VMAT e VMAT modificada. Conclusão: As técnicas convencionais 3D-CRT (FIF, FILTRO) apresentaram menores doses nos órgãos de risco. Contudo, as técnicas IMRT e VMAT obtiveram melhor homogeneidade e conformidade da dose distribuída no PTV ao comparar as técnicas convencionais.
Downloads
Referências
Santos MO, Lima FCS, Martins LFL, et al. Estimativa de incidência de câncer no Brasil, 2023-2025. Rev Bras Cancerol. 2023;69(1):e-213700. doi: https://doi.org/10.32635/2176-9745.RBC.2023v69n1.3700 DOI: https://doi.org/10.32635/2176-9745.RBC.2023v69n1.3700
Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. Br J Radiol. 2022;95(1130):20211033. doi: https://doi.org/10.1259/bjr.20211033 DOI: https://doi.org/10.1259/bjr.20211033
Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321(3):288-300. doi: https://doi.org/10.1001/jama.2018.19323 DOI: https://doi.org/10.1001/jama.2018.19323
Citrin DE. Recent developments in radiotherapy. N Engl J Med. 2017;377(11):1065-75. doi: https://doi.org/10.1056/NEJMra1608986 DOI: https://doi.org/10.1056/NEJMra1608986
Poleszczuk J, Luddy K, Chen L, et al. Neoadjuvant radiotherapy of early-stage breast cancer and long-term disease-free survival. Breast Cancer Res. 2017;19(1):75. doi: https://doi.org/10.1186/s13058-017-0870-1 DOI: https://doi.org/10.1186/s13058-017-0870-1
Krug D. Adjuvant radiotherapy for breast cancer: more than meets the eye. Breast Care (Basel). 2020;15(2):109-11. doi: https://doi.org/10.1159/000506797 DOI: https://doi.org/10.1159/000506797
Balaji K, Subramanian B, Yadav P, et al. Radiation therapy for breast cancer: literature review. Med Dosim. 2016;41(3):253-7. doi: https://doi.org/10.1016/j.meddos.2016.06.005 DOI: https://doi.org/10.1016/j.meddos.2016.06.005
De Ruysscher D, Niedermann G, Burnet NG, et al. Radiotherapy toxicity. Nat Rev Dis Primers. 2019;5(1):13. doi: https://doi.org/10.1038/s41572-019-0064-5 DOI: https://doi.org/10.1038/s41572-019-0064-5
Cheng YJ, Nie XY, Ji CC, et al. Long-term cardiovascular risk after radiotherapy in women with breast cancer. J Am Heart Assoc. 2017;6(5):e005633. doi: https://doi.org/10.1161/JAHA.117.005633 DOI: https://doi.org/10.1161/JAHA.117.005633
Haussmann J, Corradini S, Nestle-Kraemling C, et al. Recent advances in radiotherapy of breast cancer. Radiat Oncol. 2020;15(1):71. doi: https://doi.org/10.1186/s13014-020-01501-x DOI: https://doi.org/10.1186/s13014-020-01501-x
Balaji K, Yadav P, BalajiSubramanian S, et al. Hybrid volumetric modulated arc therapy for chest wall irradiation: for a good plan, get the right mixture. Phys Med. 2018;52:86-92. doi: https://doi.org/10.1016/j.ejmp.2018.06.641
Finazzi T, Nguyen VT, Zimmermann F, et al. Impact of patient and treatment characteristics on heart and lung dose in adjuvant radiotherapy for left-sided breast cancer. Radiat Oncol. 2019;14(1):153. doi: https://doi.org/10.1186/s13014-019-1364-3 DOI: https://doi.org/10.1186/s13014-019-1364-3
Zhang Q, Liu J, AO N, et al. Secondary cancer risk after radiation therapy for breast cancer with different radiotherapy techniques. Sci Rep. 2020;10:1220. doi: https://doi.org/10.1038/s41598-020-58134-z DOI: https://doi.org/10.1038/s41598-020-58134-z
Brownlee Z, Garg R, Listo M, et al. Late complications of radiation therapy for breast cancer: evolution in techniques and risk over time. Gland Surg. 2018;7(4):371-8. doi: https://doi.org/10.21037/gs.2018.01.05
Fiorentino Alba, Gregucci F, Mazzola R, et al. Intensity-modulated radiotherapy and hypofractionated volumetric modulated arc therapy for elderly patients with breast cancer: comparison of acute and late toxicities. Radiol Med. 2019;124(4):309-14. doi: https://doi.org/10.1007/s11547-018-0976-2 DOI: https://doi.org/10.1007/s11547-018-0976-2
Bentzen SM, Constine LS, Deasy JO, et al. Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S3-9. doi: https://doi.org/10.1016/j.ijrobp.2009.09.040 DOI: https://doi.org/10.1016/j.ijrobp.2009.09.040
Mamounas EP, White JR, Bandos H, et al. NSABP B-51/RTOG 1304: Randomized phase III clinical trial evaluating the role of postmastectomy chest wall and regional nodal XRT (CWRNRT) and post-lumpectomy RNRT in patients (pts) with documented positive axillary (Ax) nodes before neoadjuvant chemotherapy (NC) who convert to pathologically negative Ax nodes after NC. J Clin Oncol. 2014;32(15 Suppl):TPS1141. doi: https://doi.org/10.1200/jco.2014.32.15_suppl.tps1141 DOI: https://doi.org/10.1200/jco.2014.32.15_suppl.tps1141
Hodapp N. Der ICRU-Report 83: Verordnung, Dokumentation und Kommunikation der fluenzmodulierten Photonenstrahlentherapie (IMRT). Strahlenther Onkol. 2012;188:97-100. doi: https://doi.org/10.1007/s00066-011-0015-x DOI: https://doi.org/10.1007/s00066-011-0015-x
Lopes JS, Leidens M, Razera RAZ, et al. Avaliação da homogeneidade e conformidade de dose em planejamentos de IMRT de próstata em radioterapia. Rev Bras Fis Med [Internet]. 2015 [acesso 2022 dez 20];9(3):34-7. Disponível em: https://www.rbfm.org.br/rbfm/article/view/342
Freedman GM, White JR, Arthur DW, et al. Accelerated fractionation with a concurrent boost for early stage breast cancer. Radiother Oncol. 2013;106(1):15-20. doi: https://doi.org/10.1016/j.radonc.2012.12.001 DOI: https://doi.org/10.1016/j.radonc.2012.12.001
Jin GH, Chen LX, Deng XW, et al. A comparative dosimetric study for treating left-sided breast cancer for small breast size using five different radiotherapy techniques: conventional tangential field, filed-in-filed, Tangential-IMRT, Multi-beam IMRT and VMAT. Radiat Oncol. 2013;8:89. doi: https://doi.org/10.1186/1748-717X-8-89 DOI: https://doi.org/10.1186/1748-717X-8-89
Aras S, İkizceli T, Aktan M. Dosimetric comparison of Three-Dimensional Conformal Radiotherapy (3D-CRT) and Intensity Modulated Radiotherapy Techniques (IMRT) with radiotherapy dose simulations for left-sided mastectomy patients. Eur J Breast Health. 2019;15(2):85-9. doi: https://doi.org/10.5152/ejbh.2019.4619 DOI: https://doi.org/10.5152/ejbh.2019.4619
Elzawawy S, Hammoury SI. Comparative dosimetric study for treating left sided breast cancer using three different radiotherapy techniques: tangential wedged fields, forward planned segmented filed, and IP-IMRT. Int J Med Phys Clin Eng Radiat Oncol. 2015;4(4):308-17. doi: https://doi.org/10.4236/ijmpcero.2015.44037 DOI: https://doi.org/10.4236/ijmpcero.2015.44037
Supakalin N, Pesee M, Thamronganantasakul K, et al. Comparision of different radiotherapy planning techniques for breast cancer after breast conserving surgery. Asian Pac J Cancer Prev. 2018;19(10):2929-34. doi: https://doi.org/10.22034/APJCP.2018.19.10.2929
Hu J, Han G, Lei Y, et al. Dosimetric comparison of three radiotherapy techniques in irradiation of left-sided breast cancer patients after radical mastectomy. Biomed Res Int. 2020;2020:7131590. doi: https://doi.org/10.1155/2020/7131590 DOI: https://doi.org/10.1155/2020/7131590
Chen SN, Ramachandran P, Deb P. Dosimetric comparative study of 3DCRT, IMRT, VMAT, Ecomp, and Hybrid techniques for breast radiation therapy. Radiat Oncol J. 2020;38(4):270-81. doi: https://doi.org/10.3857/roj.2020.00619 DOI: https://doi.org/10.3857/roj.2020.00619
Balaji K, Yadav P, BalajiSubramanian S, et al. Hybrid volumetric modulated arc therapy for chest wall irradiation: for a good plan, get the right mixture. Phys Med. 2018;52:86-92. doi: https://doi.org/10.1016/j.ejmp.2018.06.641 DOI: https://doi.org/10.1016/j.ejmp.2018.06.641
Banfill K, Giuliani M, Aznar M, et al. Cardiac toxicity of thoracic radiotherapy: existing evidence and future directions. J Thorac Oncol. 2021;16(2):216-27. doi: https://doi.org/10.1016/j.jtho.2020.11.002 DOI: https://doi.org/10.1016/j.jtho.2020.11.002
Naimi Z, Moujahed R, Neji H, et al. Cardiac substructures exposure in left-sided breast cancer radiotherapy: Is the mean heart dose a reliable predictor of cardiac toxicity? Cancer Radiother. 2021;25(3):229-36. doi: https://doi.org/10.1016/j.canrad.2020.09.003 DOI: https://doi.org/10.1016/j.canrad.2020.09.003
Rehman I, Kerndt CC, Rehman A. Anatomy, thorax, heart Left Anterior Descending (LAD) artery. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [updated 2023 Jan 27; cited 2023 Feb 10]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482375
Caron J, Nohria A. Cardiac toxicity from breast cancer treatment: can we avoid this? Curr Oncol Rep. 2018;20(8):61. doi: https://doi.org/10.1007/s11912-018-0710-1 DOI: https://doi.org/10.1007/s11912-018-0710-1
Mo H, Jazieh KA, Brinzevich D, et al. A review of treatment-induced pulmonary toxicity in breast cancer. Clin Breast Cancer. 2022;22(1):1-9. doi: https://doi.org/10.1016/j.clbc.2021.05.014 DOI: https://doi.org/10.1016/j.clbc.2021.05.014
Chao PJ, Lee HF, Lan JH, et al. Propensity-score-matched evaluation of the incidence of radiation pneumonitis and secondary cancer risk for breast cancer patients treated with IMRT/VMAT. Sci Rep. 2017;7(1):13771. doi: https://doi.org/10.1038/s41598-017-14145-x DOI: https://doi.org/10.1038/s41598-017-14145-x
Brownlee Z, Garg R, Listo M, et al. Late complications of radiation therapy for breast cancer: evolution in techniques and risk over time. Gland Surg. 2018;7(4):371-8. doi: https://doi.org/10.21037/gs.2018.01.05 DOI: https://doi.org/10.21037/gs.2018.01.05
Kundrát P, Remmele J, Rennau H, et al. Minimum breast distance largely explains individual variability in doses to contralateral breast from breast-cancer radiotherapy. Radiother Oncol. 2019;131:186-91. doi: https://doi.org/10.1016/j.radonc.2018.08.022 DOI: https://doi.org/10.1016/j.radonc.2018.08.022
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Os direitos morais e intelectuais dos artigos pertencem aos respectivos autores, que concedem à RBC o direito de publicação.
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.