Comparación Dosimétrica entre Técnicas de Planificación de Radioterapia para el Cáncer de Mama Izquierdo

Autores/as

DOI:

https://doi.org/10.32635/2176-9745.RBC.2023v69n3.4020

Palabras clave:

radioterapia conformacional, radioterapia de intensidad modulada, neoplasias de la mama, dosis de radiación

Resumen

Introducción: La radioterapia se utiliza en el tratamiento del cáncer de mama. En la planificación de la radioterapia, existen formas de desarrollar el plan de tratamiento, como la radioterapia conformacional 3D (3D-CRT), la radioterapia de intensidad modulada (IMRT) y la arcoterapia volumétrica modulada (VMAT). Objetivo: Comparar las dosis en órganos de riesgo y en el volumen blanco de tratamiento con diferentes técnicas de planificación: 3D-CRT, IMRT, VMAT y VMAT modificada para el tratamiento del cáncer de mama en un fantoma antropomórfico. Método: El plan de tratamiento se realizó en el sistema Eclipse™ v.15.6 de Varian a partir de imágenes de TC adquiridas del fantoma. La dosis de prescripción establecida fue de 45 Gy en 25 fracciones de 1,8Gy/día. Resultados: En cuanto a la cobertura del volumen blanco de planificación (VBP), las técnicas 3D-CRT (filtro - FILTRO y field-in-field – FIF) demostraron una cobertura inferior en comparación con los planes IMRT y VMAT. El plan 3D-RCT-FIF mostró mayor homogeneidad en comparación con el 3D-RCT-FILTRO. Para el pulmón contralateral, los planes 3D-CRT (FIF, FILTER) obtuvieron mejores restricciones en comparación con los otros planes. En la exposición cardiaca, los planes 3D-CRT (FIF, FILTER) mostraron mayores beneficios en comparación con las técnicas IMRT, VMAT y VMAT modificada. Conclusión: Las técnicas convencionales de 3D-CRT (FIF, FILTER) mostraron dosis más bajas en los órganos de riesgo. Sin embargo, las técnicas IMRT y VMAT obtuvieron una mejor homogeneidad y conformidad de la dosis distribuida en el VBP en comparación con las técnicas convencionales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Santos MO, Lima FCS, Martins LFL, et al. Estimativa de incidência de câncer no Brasil, 2023-2025. Rev Bras Cancerol. 2023;69(1):e-213700. doi: https://doi.org/10.32635/2176-9745.RBC.2023v69n1.3700 DOI: https://doi.org/10.32635/2176-9745.RBC.2023v69n1.3700

Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. Br J Radiol. 2022;95(1130):20211033. doi: https://doi.org/10.1259/bjr.20211033 DOI: https://doi.org/10.1259/bjr.20211033

Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321(3):288-300. doi: https://doi.org/10.1001/jama.2018.19323 DOI: https://doi.org/10.1001/jama.2018.19323

Citrin DE. Recent developments in radiotherapy. N Engl J Med. 2017;377(11):1065-75. doi: https://doi.org/10.1056/NEJMra1608986 DOI: https://doi.org/10.1056/NEJMra1608986

Poleszczuk J, Luddy K, Chen L, et al. Neoadjuvant radiotherapy of early-stage breast cancer and long-term disease-free survival. Breast Cancer Res. 2017;19(1):75. doi: https://doi.org/10.1186/s13058-017-0870-1 DOI: https://doi.org/10.1186/s13058-017-0870-1

Krug D. Adjuvant radiotherapy for breast cancer: more than meets the eye. Breast Care (Basel). 2020;15(2):109-11. doi: https://doi.org/10.1159/000506797 DOI: https://doi.org/10.1159/000506797

Balaji K, Subramanian B, Yadav P, et al. Radiation therapy for breast cancer: literature review. Med Dosim. 2016;41(3):253-7. doi: https://doi.org/10.1016/j.meddos.2016.06.005 DOI: https://doi.org/10.1016/j.meddos.2016.06.005

De Ruysscher D, Niedermann G, Burnet NG, et al. Radiotherapy toxicity. Nat Rev Dis Primers. 2019;5(1):13. doi: https://doi.org/10.1038/s41572-019-0064-5 DOI: https://doi.org/10.1038/s41572-019-0064-5

Cheng YJ, Nie XY, Ji CC, et al. Long-term cardiovascular risk after radiotherapy in women with breast cancer. J Am Heart Assoc. 2017;6(5):e005633. doi: https://doi.org/10.1161/JAHA.117.005633 DOI: https://doi.org/10.1161/JAHA.117.005633

Haussmann J, Corradini S, Nestle-Kraemling C, et al. Recent advances in radiotherapy of breast cancer. Radiat Oncol. 2020;15(1):71. doi: https://doi.org/10.1186/s13014-020-01501-x DOI: https://doi.org/10.1186/s13014-020-01501-x

Balaji K, Yadav P, BalajiSubramanian S, et al. Hybrid volumetric modulated arc therapy for chest wall irradiation: for a good plan, get the right mixture. Phys Med. 2018;52:86-92. doi: https://doi.org/10.1016/j.ejmp.2018.06.641

Finazzi T, Nguyen VT, Zimmermann F, et al. Impact of patient and treatment characteristics on heart and lung dose in adjuvant radiotherapy for left-sided breast cancer. Radiat Oncol. 2019;14(1):153. doi: https://doi.org/10.1186/s13014-019-1364-3 DOI: https://doi.org/10.1186/s13014-019-1364-3

Zhang Q, Liu J, AO N, et al. Secondary cancer risk after radiation therapy for breast cancer with different radiotherapy techniques. Sci Rep. 2020;10:1220. doi: https://doi.org/10.1038/s41598-020-58134-z DOI: https://doi.org/10.1038/s41598-020-58134-z

Brownlee Z, Garg R, Listo M, et al. Late complications of radiation therapy for breast cancer: evolution in techniques and risk over time. Gland Surg. 2018;7(4):371-8. doi: https://doi.org/10.21037/gs.2018.01.05

Fiorentino Alba, Gregucci F, Mazzola R, et al. Intensity-modulated radiotherapy and hypofractionated volumetric modulated arc therapy for elderly patients with breast cancer: comparison of acute and late toxicities. Radiol Med. 2019;124(4):309-14. doi: https://doi.org/10.1007/s11547-018-0976-2 DOI: https://doi.org/10.1007/s11547-018-0976-2

Bentzen SM, Constine LS, Deasy JO, et al. Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S3-9. doi: https://doi.org/10.1016/j.ijrobp.2009.09.040 DOI: https://doi.org/10.1016/j.ijrobp.2009.09.040

Mamounas EP, White JR, Bandos H, et al. NSABP B-51/RTOG 1304: Randomized phase III clinical trial evaluating the role of postmastectomy chest wall and regional nodal XRT (CWRNRT) and post-lumpectomy RNRT in patients (pts) with documented positive axillary (Ax) nodes before neoadjuvant chemotherapy (NC) who convert to pathologically negative Ax nodes after NC. J Clin Oncol. 2014;32(15 Suppl):TPS1141. doi: https://doi.org/10.1200/jco.2014.32.15_suppl.tps1141 DOI: https://doi.org/10.1200/jco.2014.32.15_suppl.tps1141

Hodapp N. Der ICRU-Report 83: Verordnung, Dokumentation und Kommunikation der fluenzmodulierten Photonenstrahlentherapie (IMRT). Strahlenther Onkol. 2012;188:97-100. doi: https://doi.org/10.1007/s00066-011-0015-x DOI: https://doi.org/10.1007/s00066-011-0015-x

Lopes JS, Leidens M, Razera RAZ, et al. Avaliação da homogeneidade e conformidade de dose em planejamentos de IMRT de próstata em radioterapia. Rev Bras Fis Med [Internet]. 2015 [acesso 2022 dez 20];9(3):34-7. Disponível em: https://www.rbfm.org.br/rbfm/article/view/342

Freedman GM, White JR, Arthur DW, et al. Accelerated fractionation with a concurrent boost for early stage breast cancer. Radiother Oncol. 2013;106(1):15-20. doi: https://doi.org/10.1016/j.radonc.2012.12.001 DOI: https://doi.org/10.1016/j.radonc.2012.12.001

Jin GH, Chen LX, Deng XW, et al. A comparative dosimetric study for treating left-sided breast cancer for small breast size using five different radiotherapy techniques: conventional tangential field, filed-in-filed, Tangential-IMRT, Multi-beam IMRT and VMAT. Radiat Oncol. 2013;8:89. doi: https://doi.org/10.1186/1748-717X-8-89 DOI: https://doi.org/10.1186/1748-717X-8-89

Aras S, İkizceli T, Aktan M. Dosimetric comparison of Three-Dimensional Conformal Radiotherapy (3D-CRT) and Intensity Modulated Radiotherapy Techniques (IMRT) with radiotherapy dose simulations for left-sided mastectomy patients. Eur J Breast Health. 2019;15(2):85-9. doi: https://doi.org/10.5152/ejbh.2019.4619 DOI: https://doi.org/10.5152/ejbh.2019.4619

Elzawawy S, Hammoury SI. Comparative dosimetric study for treating left sided breast cancer using three different radiotherapy techniques: tangential wedged fields, forward planned segmented filed, and IP-IMRT. Int J Med Phys Clin Eng Radiat Oncol. 2015;4(4):308-17. doi: https://doi.org/10.4236/ijmpcero.2015.44037 DOI: https://doi.org/10.4236/ijmpcero.2015.44037

Supakalin N, Pesee M, Thamronganantasakul K, et al. Comparision of different radiotherapy planning techniques for breast cancer after breast conserving surgery. Asian Pac J Cancer Prev. 2018;19(10):2929-34. doi: https://doi.org/10.22034/APJCP.2018.19.10.2929

Hu J, Han G, Lei Y, et al. Dosimetric comparison of three radiotherapy techniques in irradiation of left-sided breast cancer patients after radical mastectomy. Biomed Res Int. 2020;2020:7131590. doi: https://doi.org/10.1155/2020/7131590 DOI: https://doi.org/10.1155/2020/7131590

Chen SN, Ramachandran P, Deb P. Dosimetric comparative study of 3DCRT, IMRT, VMAT, Ecomp, and Hybrid techniques for breast radiation therapy. Radiat Oncol J. 2020;38(4):270-81. doi: https://doi.org/10.3857/roj.2020.00619 DOI: https://doi.org/10.3857/roj.2020.00619

Balaji K, Yadav P, BalajiSubramanian S, et al. Hybrid volumetric modulated arc therapy for chest wall irradiation: for a good plan, get the right mixture. Phys Med. 2018;52:86-92. doi: https://doi.org/10.1016/j.ejmp.2018.06.641 DOI: https://doi.org/10.1016/j.ejmp.2018.06.641

Banfill K, Giuliani M, Aznar M, et al. Cardiac toxicity of thoracic radiotherapy: existing evidence and future directions. J Thorac Oncol. 2021;16(2):216-27. doi: https://doi.org/10.1016/j.jtho.2020.11.002 DOI: https://doi.org/10.1016/j.jtho.2020.11.002

Naimi Z, Moujahed R, Neji H, et al. Cardiac substructures exposure in left-sided breast cancer radiotherapy: Is the mean heart dose a reliable predictor of cardiac toxicity? Cancer Radiother. 2021;25(3):229-36. doi: https://doi.org/10.1016/j.canrad.2020.09.003 DOI: https://doi.org/10.1016/j.canrad.2020.09.003

Rehman I, Kerndt CC, Rehman A. Anatomy, thorax, heart Left Anterior Descending (LAD) artery. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [updated 2023 Jan 27; cited 2023 Feb 10]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482375

Caron J, Nohria A. Cardiac toxicity from breast cancer treatment: can we avoid this? Curr Oncol Rep. 2018;20(8):61. doi: https://doi.org/10.1007/s11912-018-0710-1 DOI: https://doi.org/10.1007/s11912-018-0710-1

Mo H, Jazieh KA, Brinzevich D, et al. A review of treatment-induced pulmonary toxicity in breast cancer. Clin Breast Cancer. 2022;22(1):1-9. doi: https://doi.org/10.1016/j.clbc.2021.05.014 DOI: https://doi.org/10.1016/j.clbc.2021.05.014

Chao PJ, Lee HF, Lan JH, et al. Propensity-score-matched evaluation of the incidence of radiation pneumonitis and secondary cancer risk for breast cancer patients treated with IMRT/VMAT. Sci Rep. 2017;7(1):13771. doi: https://doi.org/10.1038/s41598-017-14145-x DOI: https://doi.org/10.1038/s41598-017-14145-x

Brownlee Z, Garg R, Listo M, et al. Late complications of radiation therapy for breast cancer: evolution in techniques and risk over time. Gland Surg. 2018;7(4):371-8. doi: https://doi.org/10.21037/gs.2018.01.05 DOI: https://doi.org/10.21037/gs.2018.01.05

Kundrát P, Remmele J, Rennau H, et al. Minimum breast distance largely explains individual variability in doses to contralateral breast from breast-cancer radiotherapy. Radiother Oncol. 2019;131:186-91. doi: https://doi.org/10.1016/j.radonc.2018.08.022 DOI: https://doi.org/10.1016/j.radonc.2018.08.022

Publicado

2023-07-13

Cómo citar

1.
Prandi TMD, Zaias H, Silva C da, Müller J dos S, Blasius LP da S, Dorow PF. Comparación Dosimétrica entre Técnicas de Planificación de Radioterapia para el Cáncer de Mama Izquierdo. Rev. Bras. Cancerol. [Internet]. 13 de julio de 2023 [citado 13 de enero de 2025];69(3):e-074020. Disponible en: https://rbc.inca.gov.br/index.php/revista/article/view/4020

Número

Sección

ARTÍCULO ORIGINAL

Artículos más leídos del mismo autor/a