Potencial Analgésico dos Flavonoides na Dor Associada ao Câncer e ao seu Tratamento: Revisão Sistemática

Autores

DOI:

https://doi.org/10.32635/2176-9745.RBC.2025v71n2.4976

Palavras-chave:

Neoplasms/drug therapy, Flavonoids/pharmacology, Pain Management

Resumo

Introdução: A dor é um sintoma prevalente e incapacitante em pacientes com câncer, contribuindo para redução da qualidade de vida. Seu manejo é desafiador, com tratamentos farmacológicos convencionais associados a efeitos colaterais indesejáveis. Entre as abordagens terapêuticas emergentes, compostos naturais como flavonoides têm recebido atenção. Flavonoides são compostos fenólicos abundantes no reino vegetal, que possuem propriedades antitumorais, anti-inflamatórias, antialérgicas e antiangiogênicas, embora seu potencial analgésico seja pouco explorado. Objetivo: Revisar a literatura acerca do potencial analgésico dos flavonoides na dor oncológica e/ou relacionada ao tratamento. Método: Foi realizada uma pesquisa nas bases PubMed, SciELO, Lilacs e Biblioteca Cochrane utilizando as palavras-chave “câncer”, “flavonoides” e “dor”. Foram incluídos estudos clínicos publicados entre 2010 e 2024, em inglês, português ou espanhol, com pacientes acima de 18 anos. Foram considerados estudos que avaliaram a relação entre câncer, flavonoides e dor. Todos os estudos foram submetidos à análise de risco de viés. O estudo foi aprovado pelo PROSPERO e elaborado a partir do PRISMA. Resultados: Foram incluídos 14 estudos clínicos. O composto mais frequentemente estudado foi a epigalocatequina galato, avaliado em cânceres de mama, pulmão, cabeça e pescoço e esófago (n=9). Todos os estudos investigaram flavonoides na dor relacionada ao tratamento, com redução álgica em radiodermatite, mucosite, esofagite e onicólise. A administração de flavonoides, profilática ou terapêutica, foi bem tolerada tanto por via tópica quanto oral. Conclusão: Os flavonoides demonstram potencial analgésico promissor na dor associada ao câncer, com poucos ou nenhum efeito colateral. Estudos adicionais são necessários para elucidar sua eficácia.

Downloads

Não há dados estatísticos.

Referências

Livshits Z, Rao RB, Smith SW. An approach to chemotherapy-associated toxicity. Emerg Med Clin North Am. 2014;32(1):167-203. DOI: https://doi.org/10.1016/j.emc.2013.09.002

Fallon MT. Neuropathic pain in cancer. Br J Anaesth. 2013;111(1):105-11. DOI: https://doi.org/10.1093/bja/aet208

Bennett M, Paice JA, Wallace M. Pain and opioids in cancer care: benefits, risks, and alternatives. Am Soc Clin Oncol Educ Book. 2017;37:705-13. doi: https://doi.org/10.1200/edbk_180469 DOI: https://doi.org/10.1200/EDBK_180469

Breivik H, Cherny N, Collett B, et al. Cancer-related pain: a pan-european survey of prevalence, treatment, and patient attitudes. Ann Oncol. 2009;20(8):1420-33. DOI: https://doi.org/10.1093/annonc/mdp001

Regan JM, Peng P. Neurophysiology of cancer pain. Cancer Control. 2000;7(2):111-9. DOI: https://doi.org/10.1177/107327480000700201

Simone CB, Vapiwala N, Hampshire MK,E et al. Cancer patient attitudes toward analgesic usage and pain intervention. Clin J Pain. 2012;28(2):157-62. doi: http://dx.doi.org/10.1097/ajp.0b013e318223be30 DOI: https://doi.org/10.1097/AJP.0b013e318223be30

Deandrea S, Montanari M, Moja L, et al. Prevalence of undertreatment in cancer pain. A review of published literature. Ann Oncol. 2008;19(12):1985-91. DOI: https://doi.org/10.1093/annonc/mdn419

van Ryn M, Phelan SM, Arora NK, et al. Patient-reported quality of supportive care among patients with colorectal cancer in the veterans affairs health care system. J Clin Oncol. 2014;10;32(8):809-15. doi: https://doi.org/10.1200/jco.2013.49.4302 DOI: https://doi.org/10.1200/JCO.2013.49.4302

Neufeld NJ, Elnahal SM, Alvarez RH. Cancer pain: a review of epidemiology, clinical quality and value impact. Future Oncol. 2017;13(9):833-41. DOI: https://doi.org/10.2217/fon-2016-0423

Scarborough BM, Smith CB. Optimal pain management for patients with cancer in the modern era. CA Cancer J Clin. 2018;68(3):182-96. doi: https://doi.org/10.3322/caac.21453 DOI: https://doi.org/10.3322/caac.21453

Paice JA, Portenoy R, Lacchetti C, et al. Management of chronic pain in survivors of adult cancers: american society of clinical oncology clinical practice guideline. J Clin Oncol. 2016;34(27):3325-45. doi: https://doi.org/10.1200/jco.2016.68.5206 DOI: https://doi.org/10.1200/JCO.2016.68.5206

Correa D, Farney RJ, Chung F. Chronic opioid use and central sleep apnea: a review of the prevalence, mechanisms, and perioperative considerations. Anesth Analg. 2015;120(6):1273-85 doi: https://doi.org/10.1213/ane.0000000000000672 DOI: https://doi.org/10.1213/ANE.0000000000000672

Lee M, Silverman SM, Hansen H. A comprehensive review of opioid-induced hyperalgesia. Pain Physician [Internet]. 2011 [cited 2024 dec 20]:14(2):145-61. Available from: https://pubmed.ncbi.nlm.nih.gov/21412369/ DOI: https://doi.org/10.36076/ppj.2011/14/145

Devulder J, Jacobs A, Richarz U. Impact of opioid rescue medication for breakthrough pain on the efficacy and tolerability of long-acting opioids in patients with chronic non-malignant pain. Br J of Anaesth. 2009;103(4):576-85. doi: https://www.doi.org/10.1093/bja/aep253 DOI: https://doi.org/10.1093/bja/aep253

Matic I, Revandkar A, Chen J, et al. Identification of salvia haenkei as gerosuppressant agent by using an integrated senescence-screening assay. Aging. 2016;1;8(12):3223-40. doi: https://www.doi.org/10.18632/aging.101076 DOI: https://doi.org/10.18632/aging.101076

Argyropoulou A, Aligiannis N, Trougakos IP, et al. Natural compounds with anti-ageing activity. Nat Prod Rep. 2013;30(11):1412-37. DOI: https://doi.org/10.1039/c3np70031c

Dhiman A, Nanda A, Ahmad S. A quest for staunch effects of flavonoids: utopian protection against hepatic ailments. Arab J Chem. 2016;9(Sup2):S1813-23. doi: http://dx.doi.org/10.1016/j.arabjc.2012.05.001 DOI: https://doi.org/10.1016/j.arabjc.2012.05.001

Procházková D, Boušová I, Wilhelmová N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011;82(4):513-23. DOI: https://doi.org/10.1016/j.fitote.2011.01.018

Orfali GC, Duarte AC, Bonadio V, et al. Review of anticancer mechanisms of isoquercitin. World J Clin Oncol. 2016;7(2):189-99. DOI: https://doi.org/10.5306/wjco.v7.i2.189

Ren W, Qiao Z, Wang H, et al. Flavonoids: promising anticancer agents. ChemInform. 2003;34(38). doi: http://dx.doi.org/10.1002/chin.200338244 DOI: https://doi.org/10.1002/chin.200338244

Li Y, Fang H, Xu W. Recent advance in the research of flavonoids as anticancer agents. Mini Rev Med Chem. 2007;7(7):663-78. DOI: https://doi.org/10.2174/138955707781024463

Begum AN, Terao J. Protective effect of quercetin against cigarette tar extract-induced impairment of erythrocyte deformability. J Nutr Biochem. 2002;13(5):265-72. DOI: https://doi.org/10.1016/S0955-2863(01)00219-4

Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem. 2002;13(10):572-84. doi: http://dx.doi.org/10.1016/s0955-2863(02)00208-5 DOI: https://doi.org/10.1016/S0955-2863(02)00208-5

Shimada Y, Dewa Y, Ichimura R, et al. Antioxidant enzymatically modified isoquercitrin suppresses the development of liver preneoplastic lesions in rats induced by beta-naphthoflavone. Toxicology. 2010;268(3):213-8. DOI: https://doi.org/10.1016/j.tox.2009.12.019

Jung SH, Kim BJ, Lee EH, et al. Isoquercitrin is the most effective antioxidant in the plant Thuja orientalis and able to counteract oxidative-induced damage to a transformed cell line (RGC-5 cells). Neurochem Int. 2010;57(7):713-21. DOI: https://doi.org/10.1016/j.neuint.2010.08.005

Amado NG, Fonseca BF, Cerqueira DM, et al. Flavonoids: potential Wnt/beta-catenin signaling modulators in cancer. Life Sci. 2011;89(15-16):545-54. DOI: https://doi.org/10.1016/j.lfs.2011.05.003

Kim BH, Choi JS, Yi EH, et al. Relative antioxidant activities of quercetin and its structurally related substances and their effects on NF-κB/CRE/AP-1 signaling in murine macrophages. Mol Cells. 2013;35(5):410-20. DOI: https://doi.org/10.1007/s10059-013-0031-z

Bombardi Duarte AC, Santana MG, Camilo Orfali G, et al. Literature evidence and arrive assessment on neuroprotective effects of flavonols in neurodegenerative diseases’ Models. CNS Neurol Disord Drug Targets. 2018;17(1):34-42. DOI: https://doi.org/10.2174/1871527317666171221110139

Santana MG, Orfali GC, Palma JKY, et al. Isoquercetina como novo alvo para inibição da angiogênese no câncer de cólon. J Coloproctology. 2019;39:214. DOI: https://doi.org/10.1016/j.jcol.2019.11.407

Makino T, Kanemaru M, Okuyama S, et al. Anti-allergic effects of enzymatically modified isoquercitrin (α-oligoglucosyl quercetin 3-O-glucoside), quercetin 3-O-glucoside, α-oligoglucosyl rutin, and quercetin, when administered orally to mice. J Nat Med. 2013;67(4):881-6. DOI: https://doi.org/10.1007/s11418-013-0760-5

Rogerio AP, Kanashiro A, Fontanari C, et al. Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma. Inflamm Res. 2007;56(10):402-8. DOI: https://doi.org/10.1007/s00011-007-7005-6

Araújo ME, Ye MF, Alberto TG, et al. Enzymatic de-glycosylation of rutin improves its antioxidant and antiproliferative activities. Food Chem. 2013;141(1):266-73. doi: https://doi.org/10.1016/j.foodchem.2013.02.127 DOI: https://doi.org/10.1016/j.foodchem.2013.02.127

Oliveira CTP, Colenci R, Pacheco CC, et al. Hydrolyzed rutin decreases worsening of anaplasia in glioblastoma relapse. CNS Neurol Disord Drug Targets. 2019;18(5)405-12. doi: https://doi.org/10.2174/1871527318666190314103104 DOI: https://doi.org/10.2174/1871527318666190314103104

Franco YEM, Lima CA, Rosa MN, et al. Investigation of U-251 cell death triggered by flavonoid luteolin: towards a better understanding on its anticancer property against glioblastomas. Nat Prod Res. 2021;35(22). doi: https://doi.org/10.1080/14786419.2020.1727470 DOI: https://doi.org/10.1080/14786419.2020.1727470

Silva DC, Orfali GDC, Santana MG, et al. Antitumor effect of isoquercetin on tissue vasohibin expression and colon cancer vasculature. Oncotarget. 2022;13:307-18. doi: https://doi.org/10.18632/oncotarget.28181 DOI: https://doi.org/10.18632/oncotarget.28181

University of York. Centre for Reviews and Dissemination. New York: University of York; 2019. PROSPERO - International prospective register of systematic reviews. 2023. [acesso 2024 set 24]. Disponível em: https://www.crd.york.ac.uk/PROSPERO/

Moher D. Preferred reporting items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann Inter Med. 2009;151(4):264. doi: http://dx.doi.org/10.7326/0003-4819-151-4-200908180-00135 DOI: https://doi.org/10.7326/0003-4819-151-4-200908180-00135

Higgins J, Welch V. Cochrane Handbook for Systematic Reviews of Interventions [Internet]. [cited 2022 Dec 8]. Available from: www.handbook.cochrane.org

Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919. doi: https://doi.org/10.1136/bmj.i4919 DOI: https://doi.org/10.1136/bmj.i4919

Zhu W, Mei H, Jia L, et al. Epigallocatechin-3-gallate mouthwash protects mucosa from radiation-induced mucositis in head and neck cancer patients: a prospective, non-randomised, phase 1 trial. Investigational new drugs. 2020;38(4):1129-36. doi: https://doi.org/10.1007/s10637-019-00871-8 DOI: https://doi.org/10.1007/s10637-019-00871-8

Zhao H, Zhu W, Jia L, et al. Phase I study of topical epigallocatechin-3-gallate (EGCG) in patients with breast cancer receiving adjuvant radiotherapy. Br J Radiol. 2016;89(1058):20150665. doi: https://doi.org/10.1259/bjr.20150665 DOI: https://doi.org/10.1259/bjr.20150665

Li X, Xing L, Zhang Y, et al. Phase II trial of epigallocatechin-3-gallate in acute radiation-induced esophagitis for esophagus cancer. J Med Food. 2020;23(1):43-9. DOI: https://doi.org/10.1089/jmf.2019.4445

Zhao H, Zhu W, Zhao X, et al. Efficacy of epigallocatechin-3-gallate in preventing dermatitis in patients with breast cancer receiving postoperative radiotherapy: a double-blind, placebo-controlled, phase 2 randomized clinical trial. JAMA Dermatology. 2022;158(7):779. DOI: https://doi.org/10.1001/jamadermatol.2022.1736

Zhao H, Jia L, Chen G, et al. A prospective, three-arm, randomized trial of EGCG for preventing radiation-induced esophagitis in lung cancer patients receiving radiotherapy. Radiother Oncol. 2019;137:186-91. DOI: https://doi.org/10.1016/j.radonc.2019.02.022

Ahmad IU, Forman JD, Sarkar FH, et al. Soy isoflavones in conjunction with radiation therapy in patients with prostate cancer. Nutrition and cancer. 2010;62(7):996-1000. doi: https://doi.org/10.1080/01635581.2010.509839 DOI: https://doi.org/10.1080/01635581.2010.509839

Thomas R, Williams M, Cauchi M, et al. A double-blind, randomised trial of a polyphenolic-rich nail bed balm for chemotherapy-induced onycholysis: the UK polybalm study. Breast Cancer Res Treat. 2018;171(1):103-10. doi: https://doi.org/10.1007/s10549-018-4788-9 DOI: https://doi.org/10.1007/s10549-018-4788-9

Zhao H, Zhu W, Xie P, et al. A phase I study of concurrent chemotherapy and thoracic radiotherapy with oral epigallocatechin-3-gallate protection in patients with locally advanced stage III non-small-cell lung cancer. Radiother Oncol. 2014;110(1):132-6. DOI: https://doi.org/10.1016/j.radonc.2013.10.014

Zhao H, Xie P, Li X, et al. A prospective phase II trial of EGCG in treatment of acute radiation-induced esophagitis for stage III lung cancer. Radiother Oncol. 2015;114(3):351-6. doi: https://doi.org/10.1016/j.radonc.2015.02.014 DOI: https://doi.org/10.1016/j.radonc.2015.02.014

Babaee N, Moslemi D, Khalilpour M, et al. Antioxidant capacity of calendula officinalis flowers extract and prevention of radiation induced oropharyngeal mucositis in patients with head and neck cancers: a randomized controlled clinical study. Daru. 2013;21(1):18. doi: https://doi.org/10.1186/2008-2231-21-18 DOI: https://doi.org/10.1186/2008-2231-21-18

Crumbaker M, Pathmanandavel S, Yam AO, et al. Phase I/II Trial of the combination of 177lutetium prostate specific membrane antigen 617 and idronoxil (NOX66) in men with end-stage metastatic castration-resistant prostate cancer (LuPIN). Eur Urol Oncol. 2021;4(6). doi: https://doi.org/10.1016/j.euo.2020.07.002 DOI: https://doi.org/10.1016/j.euo.2020.07.002

Zhu W, Jia L, Chen G, et al. Epigallocatechin-3-gallate ameliorates radiation-induced acute skin damage in breast cancer patients undergoing adjuvant radiotherapy. Oncotarget. 2016;7(30):48607-13. DOI: https://doi.org/10.18632/oncotarget.9495

Kooshyar MM, Mozafari PM, Amirchaghmaghi M, et al. A randomized placebo- controlled double blind clinical trial of quercetin in the prevention and treatment of chemotherapy-induced oral mucositis. J Clin Diagn Res. 2017;11(3):ZC46-50. DOI: https://doi.org/10.7860/JCDR/2017/23975.9571

Yap J, Slade D, Goddard H, et al. Sinecatechins ointment as a potential novel treatment for usual type vulval intraepithelial neoplasia: a single-centre double-blind randomised control study. BJOG. 2021;128(6):1047-55. DOI: https://doi.org/10.1111/1471-0528.16574

Zhu W, Zhao Y, Zhang S, et al. Evaluation of epigallocatechin-3-gallate as a radioprotective agent during radiotherapy of lung cancer patients: a 5-year survival analysis of a phase 2 study. Front Oncol. 2021;11:686950. doi: https://doi.org/10.3389/fonc.2021.686950 DOI: https://doi.org/10.3389/fonc.2021.686950

Sagar SM, Yance D, Wong RK. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-Part 1. Curr Oncol. 2006;13(1):14-26. DOI: https://doi.org/10.3747/co.v13i1.77

Yao H, Xu W, Shi X, Zhang Z. Dietary flavonoids as cancer prevention agents. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2011;29(1):1-31. doi: https://doi.org/10.1080/10590501.2011.551317 DOI: https://doi.org/10.1080/10590501.2011.551317

Swarm RA, Paice JA, Anghelescu DL, et al. Adult cancer pain, version 3. 2019, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2019;17(8):977-1007. DOI: https://doi.org/10.6004/jnccn.2019.0038

Lara-Solares A, Ahumada OM, Alá BP, et al. Latin-American guidelines for cancer pain management. Pain Manag. 2017;7(4). doi: https://doi.org/10.2217/pmt-2017-0006 DOI: https://doi.org/10.2217/pmt-2017-0006

Ventafridda V, Saita L, Ripamonti C, et al. WHO guidelines for the use of analgesics in cancer pain. Int J Tissue React. 1985;7(1):93-6.

Li Z, Zhang J, Ren X, et al. The mechanism of quercetin in regulating osteoclast activation and the PAR2/TRPV1 signaling pathway in the treatment of bone cancer pain. Int J Clin Exp Pathol. 2018;11(11):5149-56.

Britti D, Crupi R, Impellizzeri D, et al. A novel composite formulation of palmitoylethanolamide and quercetin decreases inflammation and relieves pain in inflammatory and osteoarthritic pain models. BMC Vet Res. 2017;13(1):229. DOI: https://doi.org/10.1186/s12917-017-1151-z

Gao W, Zan Y, Wang ZJJ, et al. Quercetin ameliorates paclitaxel-induced neuropathic pain by stabilizing mast cells, and subsequently blocking PKCε-dependent activation of TRPV1. Acta Pharmacol Sin. 2016;37(9):1166-77. DOI: https://doi.org/10.1038/aps.2016.58

Anjaneyulu M, Chopra K. Quercetin attenuates thermal hyperalgesia and cold allodynia in STZ-induced diabetic rats. Indian J Exp Biol. 2004;42(8):766-9.

Çivi S, Emmez G, Dere ÜA, et al. Effects of quercetin on chronic constriction nerve injury in an experimental rat model. Acta Neurochir (Wien). 2016;158(5):959-65. DOI: https://doi.org/10.1007/s00701-016-2761-0

Spencer JPE. The impact of fruit flavonoids on memory and cognition. Br J Nutr. 2010t;104(Suppl 3):S40-7. DOI: https://doi.org/10.1017/S0007114510003934

Marder M, Paladini AC. GABA(A)-receptor ligands of flavonoid structure. Curr Top Med Chem. 2002;2(8):853-67. DOI: https://doi.org/10.2174/1568026023393462

Kanazawa LKS, Vecchia DD, Wendler EM, et al. Quercetin reduces manic-like behavior and brain oxidative stress induced by paradoxical sleep deprivation in mice. Free Radic Biol Med. 2016;99:79-86. DOI: https://doi.org/10.1016/j.freeradbiomed.2016.07.027

Li Q, Zhang X. Epigallocatechin-3-gallate attenuates bone cancer pain involving decreasing spinal Tumor Necrosis Factor-α expression in a mouse model. Int Immunopharmacol. 2015;29(2):818-23. doi: https://doi.org/10.1016/j.intimp.2015.08.037 DOI: https://doi.org/10.1016/j.intimp.2015.08.037

Filho AW, Filho VC, Olinger L, et al. Quercetin: further investigation of its antinociceptive properties and mechanisms of action. Arch Pharm Res. 2008;31(6):713-21. DOI: https://doi.org/10.1007/s12272-001-1217-2

Hossain R, Al-Khafaji K, Khan RA, et al. Quercetin and/or ascorbic acid modulatory effect on phenobarbital-induced sleeping mice possibly through gaba and gaba receptor interaction pathway. Pharmaceuticals (Basel). 2021;14(8):721. doi: http://dx.doi.org/10.3390/ph14080721 DOI: https://doi.org/10.3390/ph14080721

Calixto-Campos C, Corrêa MP, Carvalho TT, et al. Quercetin reduces Ehrlich tumor-induced cancer pain in mice. Anal Cell Pathol (Amst). 2015;2015:285708. doi: https://doi.org/10.1155/2015/285708 DOI: https://doi.org/10.1155/2015/285708

Liu C, Liu DQ, Tian YK, et al. The emerging role of quercetin in the treatment of chronic pain. Current Neuropharmacology. 2022;20(12):2346-53. DOI: https://doi.org/10.2174/1570159X20666220812122437

Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-63. DOI: https://doi.org/10.3322/caac.21834

Semis HS, Kandemir FM, Kaynar O, et al. The protective effects of hesperidin against paclitaxel-induced peripheral neuropathy in rats. Life Sci. 2021;287:120104. doi: https://doi.org/10.1016/j.lfs.2021.120104 DOI: https://doi.org/10.1016/j.lfs.2021.120104

Gui Y, Zhang J, Chen L, et al. Icariin, a flavonoid with anti-cancer effects, alleviated paclitaxel-induced neuropathic pain in a SIRT1-dependent manner. Mol Pain. 2018;14:1744806918768970. doi: https://doi.org/10.1177/1744806918768970 DOI: https://doi.org/10.1177/1744806918768970

Di Cesare Mannelli L, Zanardelli M, Failli P, et al. Oxaliplatin-induced neuropathy: oxidative stress as pathological mechanism. Protective effect of silibinin. J Pain. 2012;13(3):276-84. doi: https://doi.org/10.1016/j.jpain.2011.11.009 DOI: https://doi.org/10.1016/j.jpain.2011.11.009

Azevedo MI, Pereira AF, Nogueira RB, et al. The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy. Mol Pain. 2013;9:53. doi: https://doi.org/10.1186/1744-8069-9-53 DOI: https://doi.org/10.1186/1744-8069-9-53

Jiang W, Wang Y, Sun W, et al. Morin suppresses astrocyte activation and regulates cytokine release in bone cancer pain rat models. Phytother Res. 2017;31(9):1298-304. doi: https://doi.org/10.1002/ptr.5849 DOI: https://doi.org/10.1002/ptr.5849

Wang A, Guo D, Cheng H, et al. Transcriptome sequencing explores the mechanism of baicalin on bone cancer pain. J Inflamm Res. 2021;14:5999-6010. doi: https://doi.org/10.2147/jir.s336028 DOI: https://doi.org/10.2147/JIR.S336028

Zhou YS, Cui Y, Zheng JX, et al. Luteolin relieves lung cancer-induced bone pain by inhibiting NLRP3 inflammasomes and glial activation in the spinal dorsal horn in mice. Phytomedicine. 2022;96:153910. doi: https://doi.org/10.1016/j.phymed.2021.153910 DOI: https://doi.org/10.1016/j.phymed.2021.153910

Minasian LM, O’Mara A, Mitchell SA. Clinician and patient reporting of symptomatic adverse events in cancer clinical trials: using CTCAE and PRO-CTCAE® to provide two distinct and complementary perspectives. Patient Relat Outcome Meas. 2022;13:249-58. doi: https://doi.org/10.2147/prom.s256567 DOI: https://doi.org/10.2147/PROM.S256567

Freites-Martinez A, Santana N, Arias-Santiago S, et al. Using the common terminology criteria for adverse events (CTCAE - Version 5.0) to evaluate the severity of adverse events of anticancer therapies. Actas dermo-sifiliograficas [Internet]. 2021;112(1):90-2. doi: https://doi.org/10.1016/j.ad.2019.05.009 DOI: https://doi.org/10.1016/j.adengl.2019.05.021

Cox JD, Stetz J, Pajak TF. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys. 1995;31(5):1341-6. DOI: https://doi.org/10.1016/0360-3016(95)00060-C

Williamson A, Hoggart B. Pain: a review of three commonly used pain rating scales. J Clin Nurs. 2005;14(7):798-804. doi: https://doi.org/10.1111/j.1365-2702.2005.01121.x DOI: https://doi.org/10.1111/j.1365-2702.2005.01121.x

Publicado

2025-05-07

Como Citar

1.
Santana MG, Dib RV, Deus MC de, Teodoro AL, Denise Gonçalves. Potencial Analgésico dos Flavonoides na Dor Associada ao Câncer e ao seu Tratamento: Revisão Sistemática. Rev. Bras. Cancerol. [Internet]. 7º de maio de 2025 [citado 9º de julho de 2025];71(2):e-134976. Disponível em: https://rbc.inca.gov.br/index.php/revista/article/view/4976

Edição

Seção

REVISÃO DE LITERATURA

Artigos mais lidos pelo mesmo(s) autor(es)