Using Whole Exome Sequencing on Diagnosis of Pancreatic Ductal Adenocarcinoma
DOI:
https://doi.org/10.32635/2176-9745.RBC.2023v69n1.3006Keywords:
carcinoma, pancreatic ductal, whole exome sequencing, molecular targeted therapyAbstract
Introduction: The prevalence of pancreatic ductal adenocarcinoma (PDAC) in Brazil is around two percent of all neoplasms. It is an aggressive disease responsible for five percent of all deaths by cancer. The analysis of exome – part of the DNA encoding the proteins – allows the identification of tumor-specific variants and the patient polymorphism. This information is necessary to implement target therapy for PDAC, as it provides evidence to select, or exclude, PDAC treatments. Objective: Identify the somatic and germinative variants of clinical and pharmacological interest in the PDAC for four patients through the whole-exome sequencing technique (WES). Method: Public sequencing exome data published by Texas Cancer Research Biobank were utilized, from four tumor-normal samples pair of PDAC located in the pancreas head of Caucasian patients, T3N1M0 stage. To identify somatic and germinative variations, the GATK software was adopted. Furthermore, these variants were noted with their clinical and pharmacological information through the VEP software and its consequences were analyzed through the statistical software R. Results: Of the four tumors, one has a structural variant with duplication of the AKT2 gene; another, changes in the pathway of cyclins CDK14 and CDKN2C. Both findings alter the chemotherapy regimen; in the germline, one patient has variants in the XRCC1 gene, which suggests increased response to platinum. Conclusion: Although the pathology classifies all tumours as PDAC, each patient – as well as their respective tumor – shows specificities that affect the diagnosis and therapeutic possibilities. WES allows to identify them at a low cost, expanding the treatment possibilities of PDAC.
Downloads
References
Instituto Nacional de Câncer [Internet]. Rio de Janeiro: INCA; [data desconhecida]. Tipos de câncer: câncer de pâncreas; [atualizada 2021 ago 24; acesso 2022 jan 15]. Disponível em: https://www.inca.gov.br/tipos-de-cancer/cancer-de-pancreas
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7-30. doi: https://doi.org/10.3322/caac.21590 DOI: https://doi.org/10.3322/caac.21590
Markham MJ, Wachter K, Agarwal N, et al. Clinical cancer advances 2020: annual report on progress against cancer from the American Society of Clinical Oncology. J Clin Oncol. 2020;38(10):1081. doi: https://doi.org/10.1200/JCO.19.03141. Erratum in: J Clin Oncol. 2020;38(26):3076. doi: https://doi.org/10.1200/JCO.20.02291 DOI: https://doi.org/10.1200/JCO.19.03141
Luchini C, Capelli P, Scarpa A. Pancreatic ductal adenocarcinoma and its variants. Surg Pathol Clin. 2016;9(4):547-60. doi: https://doi.org/10.1016/j.path.2016.05.003 DOI: https://doi.org/10.1016/j.path.2016.05.003
Porta M, Fabregat X, Malats N, et al. Exocrine pancreatic cancer: symptoms at presentation and their relation to tumour site and stage. Clin Transl Oncol. 2005;7(5):189-97. doi: https://doi.org/10.1007/BF02712816 DOI: https://doi.org/10.1007/BF02712816
National Comprehensive Cancer Network. Pancreatic adenocarcinoma [Internet]. Version 2.2021. Plymouth Meeting, PA: NCCN; 2021 Feb 25. [cited 2021 Oct 7]. Available from: https://www.nccn.org/guidelines/nccn-guidelines/guidelines-detail?category=1&id=1455
Amin MB, Edge S, Greene F, et al, editors. AJCC cancer staging manual. 8th ed. Springer International Publishing: American Joint Commission on Cancer; 2017.
Schmied BM, Z'graggen K, Redaelli CA, et al. Problems in staging of pancreatic and hepatobiliary tumours. Ann Oncol. 2000;11 Suppl 3:161-4. doi: https://doi.org/10.1093/annonc/11.suppl_3.161 DOI: https://doi.org/10.1093/annonc/11.suppl_3.161
Kamarajah SK, Burns WR, Frankel TL, et al. Validation of the American Joint Commission on Cancer (AJCC) 8th edition staging system for patients with pancreatic adenocarcinoma: a Surveillance, Epidemiology and End Results (SEER) Analysis. Ann Surg Oncol. 2017;24(7):2023-30. doi: https://doi.org/10.1245/s10434-017-5810-x DOI: https://doi.org/10.1245/s10434-017-5810-x
Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45(10):1113-20. doi: https://doi.org/10.1038/ng.2764 DOI: https://doi.org/10.1038/ng.2764
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74. doi: https://doi.org/10.1016/j.cell.2011.02.013 DOI: https://doi.org/10.1016/j.cell.2011.02.013
McCombie WR, McPherson JD, Mardis ER. Next-generation sequencing technologies. Cold Spring Harb Perspect Med. 2019;9(11):a036798. doi: https://doi.org/10.1101/cshperspect.a036798 DOI: https://doi.org/10.1101/cshperspect.a036798
van Dijk EL, Auger H, Jaszczyszyn Y, et al. Ten years of next-generation sequencing technology. Trends Genet. 2014;30(9):418-26. doi: https://doi.org/10.1016/j.tig.2014.07.001 DOI: https://doi.org/10.1016/j.tig.2014.07.001
Ding L, Bailey MH, Porta-Pardo E, et al. Perspective on oncogenic processes at the end of the beginning of cancer genomics. Cell. 2018;173(2):305-20.e10. doi: https://doi.org/10.1016/j.cell.2018.03.033 DOI: https://doi.org/10.1016/j.cell.2018.03.033
Strom SP. Current practices and guidelines for clinical next-generation sequencing oncology testing. Cancer Biol Med. 2016;13(1):3-11. doi: https://doi.org/10.28092/j.issn.2095-3941.2016.0004 DOI: https://doi.org/10.20892/j.issn.2095-3941.2016.0004
Cancer Genome Atlas Research Network. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell. 2017;32(2):185-203.e13. doi: https://doi.org/10.1016/j.ccell.2017.07.007 DOI: https://doi.org/10.1016/j.ccell.2017.07.007
Waddell N, Pajic M, Patch AM. et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518(7540):495-501. doi: https://doi.org/10.1038/nature14169 DOI: https://doi.org/10.1038/nature14169
Dreyer SB, Upstill-Goddard R, Paulus-Hock V, et al. Targeting DNA damage response and replication stress in pancreatic cancer. Gastroenterology. 2021;160(1):362-77.e13. doi: https://doi.org/10.1053/j.gastro.2020.09.043 DOI: https://doi.org/10.1053/j.gastro.2020.09.043
Dreyer SB, Pinese M, Jamieson NB, et al. Precision oncology in surgery: patient selection for operable pancreatic cancer. Ann Surg. 2020;272(2):366-76. doi: https://doi.org/10.1097/SLA.0000000000003143 DOI: https://doi.org/10.1097/SLA.0000000000003143
Ychou M, Conroy T, Seitz JF, et al. An open phase I study assessing the feasibility of the triple combination: oxaliplatin plus irinotecan plus leucovorin/ 5-fluorouracil every 2 weeks in patients with advanced solid tumors. Ann Oncol. 2003;14(3):481-9. doi: https://doi.org/10.1093/annonc/mdg119 DOI: https://doi.org/10.1093/annonc/mdg119
Amstutz U, Henricks LM, Offer SM, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin Pharmacol Ther. 2018;103(2):210-6. doi: https://doi.org/10.1002/cpt.911 DOI: https://doi.org/10.1002/cpt.911
Swen JJ, Nijenhuis M, de Boer A, et al. Pharmacogenetics: from bench to byte--an update of guidelines. Clin Pharmacol Ther. 2011;89(5):662-73. doi: https://doi.org/10.1038/clpt.2011.34 DOI: https://doi.org/10.1038/clpt.2011.34
Whirl-Carrillo M, McDonagh EM, Hebert JM, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92(4):414-7. doi: https://doi.org/10.1038/clpt.2012.96 DOI: https://doi.org/10.1038/clpt.2012.96
PharmGKB [Internet]. Stanford (CA): Stanford University; c2001-2022. Clinical Annotation for UGT1A1*1, UGT1A1*28; FOLFIRI or irinotecan; Neutropenia (level 1A Toxicity); [cited 2022 Mar 13]. Available from: https://www.pharmgkb.org/clinicalAnnotation/1451204660
Becnel LB, Pereira S, Drummond JA, et al. An open access pilot freely sharing cancer genomic data from participants in Texas. Sci Data. 2016;3:160010. doi: https://doi.org/10.1038/sdata.2016.10 DOI: https://doi.org/10.1038/sdata.2016.10
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754-60. doi: https://doi.org/10.1093/bioinformatics/btp324 DOI: https://doi.org/10.1093/bioinformatics/btp324
FastQC [Internet]. Version 0.11.9. Cambridge: Babraham Institute. [2010]. – [cited 2022 Jan 3]. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Benjamin D, Sato T, Cibulskis K, et al. Calling somatic SNVs and indels with Mutect2. BioRxiv [Preprint]. 2019. doi: https://doi.org/10.1101/861054 DOI: https://doi.org/10.1101/861054
Van der Auwera GA, Carneiro M, Hartl C, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43(1110):11.10.1-11.10.33. doi: https://doi.org/10.1002/0471250953.bi1110s43 DOI: https://doi.org/10.1002/0471250953.bi1110s43
Kuilman T. CopywriteR: copy number information from targeted sequencing using off-target reads [Internet]. R package Version 2.26.0. [place unknown]: Bioconductor; c2003. doi: https://doi.org/10.18129/B9.bioc.CopywriteR
Danecek P, Bonfield JK, Liddle J, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10(2):giab008. doi: https://doi.org/10.1093/gigascience/giab008 DOI: https://doi.org/10.1093/gigascience/giab008
McLaren W, Gil L, Hunt SE, et al. The ensembl variant effect predictor. Genome Biol. 2016;17(1):122. doi: https://doi.org/10.1186/s13059-016-0974-4 DOI: https://doi.org/10.1186/s13059-016-0974-4
Conselho Nacional de Saúde (BR). Resolução nº 466, de 12 de dezembro de 2012. Aprova as diretrizes e normas regulamentadoras de pesquisas envolvendo seres humanos [Internet]. Diário Oficial da União, Brasília, DF. 2013 jun 13 [acesso 2022 mar 20]; Seção 1:59. Disponível em: https://bvsms.saude.gov.br/bvs/saudelegis/cns/2013/res0466_12_12_2012.html
Conselho Nacional de Saúde (BR). Resolução nº 510, de 7 de abril de 2016. Dispõe sobre as normas aplicáveis a pesquisas em Ciências Humanas e Sociais cujos procedimentos metodológicos envolvam a utilização de dados diretamente obtidos com os participantes ou de informações identificáveis ou que possam acarretar riscos maiores do que os existentes na vida cotidiana, na forma definida nesta Resolução [Internet]. Diário Oficial da União, Brasília, DF. 2016 maio 24 [acesso 2022 mar 20]; Seção 1:44. Disponível em: http://bvsms.saude.gov.br/bvs/saudelegis/cns/2016/res0510_07_04_2016.html
Landrum MJ, Lee JM, Benson M, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062-7. doi: https://doi.org/10.1093/nar/gkx1153 DOI: https://doi.org/10.1093/nar/gkx1153
Clark K, Karsch-Mizrachi I, Lipman DJ, et al. GenBank. Nucleic Acids Res. 2016;44(D1):D67-72. doi: https://doi.org/10.1093/nar/gkv1276 DOI: https://doi.org/10.1093/nar/gkv1276
Mehra S, Deshpande N, Nagathihalli N. Targeting PI3K pathway in pancreatic ductal adenocarcinoma: rationale and progress. Cancers (Basel). 2021;13(17):4434. doi: https://doi.org/10.3390/cancers13174434 DOI: https://doi.org/10.3390/cancers13174434
Liu J, Kang R, Tang D. The KRAS-G12C inhibitor: activity and resistance. Cancer Gene Ther. 2021;29(7):875-878. doi: https://doi.org/10.1038/s41417-021-00383-9 DOI: https://doi.org/10.1038/s41417-021-00383-9
Wijnen R, Pecoraro C, Carbone D, et al. Cyclin Dependent Kinase-1 (CDK-1) Inhibition as a Novel Therapeutic Strategy against Pancreatic Ductal Adenocarcinoma (PDAC). Cancers (Basel). 2021;13(17):4389. doi: https://doi.org/10.3390/cancers13174389 DOI: https://doi.org/10.3390/cancers13174389
Published
How to Cite
Issue
Section
License
Os direitos morais e intelectuais dos artigos pertencem aos respectivos autores, que concedem à RBC o direito de publicação.
This work is licensed under a Creative Commons Attribution 4.0 International License.