Using Whole Exome Sequencing on Diagnosis of Pancreatic Ductal Adenocarcinoma

Authors

  • Jacques de Oliveira Bernardes Universidade Federal de Santa Catarina (UFSC). Departamento de Biologia Celular, Embriologia e Genética. Florianópolis (SC), Brasil. https://orcid.org/0000-0002-5162-5444
  • Guilherme Toledo-Silva Universidade Federal de Santa Catarina (UFSC). Departamento de Biologia Celular, Embriologia e Genética. Florianópolis (SC), Brasil. https://orcid.org/0000-0002-9953-2861

DOI:

https://doi.org/10.32635/2176-9745.RBC.2023v69n1.3006

Keywords:

carcinoma, pancreatic ductal, whole exome sequencing, molecular targeted therapy

Abstract

Introduction: The prevalence of pancreatic ductal adenocarcinoma (PDAC) in Brazil is around two percent of all neoplasms. It is an aggressive disease responsible for five percent of all deaths by cancer. The analysis of exome – part of the DNA encoding the proteins – allows the identification of tumor-specific variants and the patient polymorphism. This information is necessary to implement target therapy for PDAC, as it provides evidence to select, or exclude, PDAC treatments. Objective: Identify the somatic and germinative variants of clinical and pharmacological interest in the PDAC for four patients through the whole-exome sequencing technique (WES). Method: Public sequencing exome data published by Texas Cancer Research Biobank were utilized, from four tumor-normal samples pair of PDAC located in the pancreas head of Caucasian patients, T3N1M0 stage. To identify somatic and germinative variations, the GATK software was adopted. Furthermore, these variants were noted with their clinical and pharmacological information through the VEP software and its consequences were analyzed through the statistical software R. Results: Of the four tumors, one has a structural variant with duplication of the AKT2 gene; another, changes in the pathway of cyclins CDK14 and CDKN2C. Both findings alter the chemotherapy regimen; in the germline, one patient has variants in the XRCC1 gene, which suggests increased response to platinum. Conclusion: Although the pathology classifies all tumours as PDAC, each patient – as well as their respective tumor – shows specificities that affect the diagnosis and therapeutic possibilities. WES allows to identify them at a low cost, expanding the treatment possibilities of PDAC.

Downloads

Download data is not yet available.

References

Instituto Nacional de Câncer [Internet]. Rio de Janeiro: INCA; [data desconhecida]. Tipos de câncer: câncer de pâncreas; [atualizada 2021 ago 24; acesso 2022 jan 15]. Disponível em: https://www.inca.gov.br/tipos-de-cancer/cancer-de-pancreas

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7-30. doi: https://doi.org/10.3322/caac.21590 DOI: https://doi.org/10.3322/caac.21590

Markham MJ, Wachter K, Agarwal N, et al. Clinical cancer advances 2020: annual report on progress against cancer from the American Society of Clinical Oncology. J Clin Oncol. 2020;38(10):1081. doi: https://doi.org/10.1200/JCO.19.03141. Erratum in: J Clin Oncol. 2020;38(26):3076. doi: https://doi.org/10.1200/JCO.20.02291 DOI: https://doi.org/10.1200/JCO.19.03141

Luchini C, Capelli P, Scarpa A. Pancreatic ductal adenocarcinoma and its variants. Surg Pathol Clin. 2016;9(4):547-60. doi: https://doi.org/10.1016/j.path.2016.05.003 DOI: https://doi.org/10.1016/j.path.2016.05.003

Porta M, Fabregat X, Malats N, et al. Exocrine pancreatic cancer: symptoms at presentation and their relation to tumour site and stage. Clin Transl Oncol. 2005;7(5):189-97. doi: https://doi.org/10.1007/BF02712816 DOI: https://doi.org/10.1007/BF02712816

National Comprehensive Cancer Network. Pancreatic adenocarcinoma [Internet]. Version 2.2021. Plymouth Meeting, PA: NCCN; 2021 Feb 25. [cited 2021 Oct 7]. Available from: https://www.nccn.org/guidelines/nccn-guidelines/guidelines-detail?category=1&id=1455

Amin MB, Edge S, Greene F, et al, editors. AJCC cancer staging manual. 8th ed. Springer International Publishing: American Joint Commission on Cancer; 2017.

Schmied BM, Z'graggen K, Redaelli CA, et al. Problems in staging of pancreatic and hepatobiliary tumours. Ann Oncol. 2000;11 Suppl 3:161-4. doi: https://doi.org/10.1093/annonc/11.suppl_3.161 DOI: https://doi.org/10.1093/annonc/11.suppl_3.161

Kamarajah SK, Burns WR, Frankel TL, et al. Validation of the American Joint Commission on Cancer (AJCC) 8th edition staging system for patients with pancreatic adenocarcinoma: a Surveillance, Epidemiology and End Results (SEER) Analysis. Ann Surg Oncol. 2017;24(7):2023-30. doi: https://doi.org/10.1245/s10434-017-5810-x DOI: https://doi.org/10.1245/s10434-017-5810-x

Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45(10):1113-20. doi: https://doi.org/10.1038/ng.2764 DOI: https://doi.org/10.1038/ng.2764

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74. doi: https://doi.org/10.1016/j.cell.2011.02.013 DOI: https://doi.org/10.1016/j.cell.2011.02.013

McCombie WR, McPherson JD, Mardis ER. Next-generation sequencing technologies. Cold Spring Harb Perspect Med. 2019;9(11):a036798. doi: https://doi.org/10.1101/cshperspect.a036798 DOI: https://doi.org/10.1101/cshperspect.a036798

van Dijk EL, Auger H, Jaszczyszyn Y, et al. Ten years of next-generation sequencing technology. Trends Genet. 2014;30(9):418-26. doi: https://doi.org/10.1016/j.tig.2014.07.001 DOI: https://doi.org/10.1016/j.tig.2014.07.001

Ding L, Bailey MH, Porta-Pardo E, et al. Perspective on oncogenic processes at the end of the beginning of cancer genomics. Cell. 2018;173(2):305-20.e10. doi: https://doi.org/10.1016/j.cell.2018.03.033 DOI: https://doi.org/10.1016/j.cell.2018.03.033

Strom SP. Current practices and guidelines for clinical next-generation sequencing oncology testing. Cancer Biol Med. 2016;13(1):3-11. doi: https://doi.org/10.28092/j.issn.2095-3941.2016.0004 DOI: https://doi.org/10.20892/j.issn.2095-3941.2016.0004

Cancer Genome Atlas Research Network. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell. 2017;32(2):185-203.e13. doi: https://doi.org/10.1016/j.ccell.2017.07.007 DOI: https://doi.org/10.1016/j.ccell.2017.07.007

Waddell N, Pajic M, Patch AM. et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518(7540):495-501. doi: https://doi.org/10.1038/nature14169 DOI: https://doi.org/10.1038/nature14169

Dreyer SB, Upstill-Goddard R, Paulus-Hock V, et al. Targeting DNA damage response and replication stress in pancreatic cancer. Gastroenterology. 2021;160(1):362-77.e13. doi: https://doi.org/10.1053/j.gastro.2020.09.043 DOI: https://doi.org/10.1053/j.gastro.2020.09.043

Dreyer SB, Pinese M, Jamieson NB, et al. Precision oncology in surgery: patient selection for operable pancreatic cancer. Ann Surg. 2020;272(2):366-76. doi: https://doi.org/10.1097/SLA.0000000000003143 DOI: https://doi.org/10.1097/SLA.0000000000003143

Ychou M, Conroy T, Seitz JF, et al. An open phase I study assessing the feasibility of the triple combination: oxaliplatin plus irinotecan plus leucovorin/ 5-fluorouracil every 2 weeks in patients with advanced solid tumors. Ann Oncol. 2003;14(3):481-9. doi: https://doi.org/10.1093/annonc/mdg119 DOI: https://doi.org/10.1093/annonc/mdg119

Amstutz U, Henricks LM, Offer SM, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin Pharmacol Ther. 2018;103(2):210-6. doi: https://doi.org/10.1002/cpt.911 DOI: https://doi.org/10.1002/cpt.911

Swen JJ, Nijenhuis M, de Boer A, et al. Pharmacogenetics: from bench to byte--an update of guidelines. Clin Pharmacol Ther. 2011;89(5):662-73. doi: https://doi.org/10.1038/clpt.2011.34 DOI: https://doi.org/10.1038/clpt.2011.34

Whirl-Carrillo M, McDonagh EM, Hebert JM, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92(4):414-7. doi: https://doi.org/10.1038/clpt.2012.96 DOI: https://doi.org/10.1038/clpt.2012.96

PharmGKB [Internet]. Stanford (CA): Stanford University; c2001-2022. Clinical Annotation for UGT1A1*1, UGT1A1*28; FOLFIRI or irinotecan; Neutropenia (level 1A Toxicity); [cited 2022 Mar 13]. Available from: https://www.pharmgkb.org/clinicalAnnotation/1451204660

Becnel LB, Pereira S, Drummond JA, et al. An open access pilot freely sharing cancer genomic data from participants in Texas. Sci Data. 2016;3:160010. doi: https://doi.org/10.1038/sdata.2016.10 DOI: https://doi.org/10.1038/sdata.2016.10

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754-60. doi: https://doi.org/10.1093/bioinformatics/btp324 DOI: https://doi.org/10.1093/bioinformatics/btp324

FastQC [Internet]. Version 0.11.9. Cambridge: Babraham Institute. [2010]. – [cited 2022 Jan 3]. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Benjamin D, Sato T, Cibulskis K, et al. Calling somatic SNVs and indels with Mutect2. BioRxiv [Preprint]. 2019. doi: https://doi.org/10.1101/861054 DOI: https://doi.org/10.1101/861054

Van der Auwera GA, Carneiro M, Hartl C, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43(1110):11.10.1-11.10.33. doi: https://doi.org/10.1002/0471250953.bi1110s43 DOI: https://doi.org/10.1002/0471250953.bi1110s43

Kuilman T. CopywriteR: copy number information from targeted sequencing using off-target reads [Internet]. R package Version 2.26.0. [place unknown]: Bioconductor; c2003. doi: https://doi.org/10.18129/B9.bioc.CopywriteR

Danecek P, Bonfield JK, Liddle J, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10(2):giab008. doi: https://doi.org/10.1093/gigascience/giab008 DOI: https://doi.org/10.1093/gigascience/giab008

McLaren W, Gil L, Hunt SE, et al. The ensembl variant effect predictor. Genome Biol. 2016;17(1):122. doi: https://doi.org/10.1186/s13059-016-0974-4 DOI: https://doi.org/10.1186/s13059-016-0974-4

Conselho Nacional de Saúde (BR). Resolução nº 466, de 12 de dezembro de 2012. Aprova as diretrizes e normas regulamentadoras de pesquisas envolvendo seres humanos [Internet]. Diário Oficial da União, Brasília, DF. 2013 jun 13 [acesso 2022 mar 20]; Seção 1:59. Disponível em: https://bvsms.saude.gov.br/bvs/saudelegis/cns/2013/res0466_12_12_2012.html

Conselho Nacional de Saúde (BR). Resolução nº 510, de 7 de abril de 2016. Dispõe sobre as normas aplicáveis a pesquisas em Ciências Humanas e Sociais cujos procedimentos metodológicos envolvam a utilização de dados diretamente obtidos com os participantes ou de informações identificáveis ou que possam acarretar riscos maiores do que os existentes na vida cotidiana, na forma definida nesta Resolução [Internet]. Diário Oficial da União, Brasília, DF. 2016 maio 24 [acesso 2022 mar 20]; Seção 1:44. Disponível em: http://bvsms.saude.gov.br/bvs/saudelegis/cns/2016/res0510_07_04_2016.html

Landrum MJ, Lee JM, Benson M, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062-7. doi: https://doi.org/10.1093/nar/gkx1153 DOI: https://doi.org/10.1093/nar/gkx1153

Clark K, Karsch-Mizrachi I, Lipman DJ, et al. GenBank. Nucleic Acids Res. 2016;44(D1):D67-72. doi: https://doi.org/10.1093/nar/gkv1276 DOI: https://doi.org/10.1093/nar/gkv1276

Mehra S, Deshpande N, Nagathihalli N. Targeting PI3K pathway in pancreatic ductal adenocarcinoma: rationale and progress. Cancers (Basel). 2021;13(17):4434. doi: https://doi.org/10.3390/cancers13174434 DOI: https://doi.org/10.3390/cancers13174434

Liu J, Kang R, Tang D. The KRAS-G12C inhibitor: activity and resistance. Cancer Gene Ther. 2021;29(7):875-878. doi: https://doi.org/10.1038/s41417-021-00383-9 DOI: https://doi.org/10.1038/s41417-021-00383-9

Wijnen R, Pecoraro C, Carbone D, et al. Cyclin Dependent Kinase-1 (CDK-1) Inhibition as a Novel Therapeutic Strategy against Pancreatic Ductal Adenocarcinoma (PDAC). Cancers (Basel). 2021;13(17):4389. doi: https://doi.org/10.3390/cancers13174389 DOI: https://doi.org/10.3390/cancers13174389

Published

2023-01-16

How to Cite

1.
Bernardes J de O, Toledo-Silva G. Using Whole Exome Sequencing on Diagnosis of Pancreatic Ductal Adenocarcinoma. Rev. Bras. Cancerol. [Internet]. 2023 Jan. 16 [cited 2024 Nov. 22];69(1):e-053006. Available from: https://rbc.inca.gov.br/index.php/revista/article/view/3006

Issue

Section

ORIGINAL ARTICLE