TP53 Arg72Pro Genetic Polymorphism and Young Women with Breast Cancer: Case-Control Study in Brazil
DOI:
https://doi.org/10.32635/2176-9745.RBC.2023v69n2.3674Keywords:
Breast cancer, TP53 Gene, Polymorphism, young women, Case-Control StudyAbstract
Introduction: Breast cancer is the most common cancer in women and incidence and mortality rates are increasing among young women worldwide, including Brazil. TP53 Arg72Pro polymorphism (rs1042522) has been associated with breast cancer, due to its important role in cell cycle that impacts the development of cancer. Objective: To determine the magnitude of the association between TP53 Arg72Pro polymorphism and breast cancer development in young Brazilian women. Method: Hospital-based case-control study conducted in Rio de Janeiro with 268 confirmed breast cancer cases and 277 controls with women enrolled among hospitalized patients without neoplastic diseases or their companions at three public hospitals. Results: The genotype frequency was 46.57% for Arg/Pro, 35.74% for Arg/Arg, and 17.69% for Pro/Pro among healthy controls and 41.04% for Arg/Pro, 46.64% for Arg/Arg, and 12.31% for Pro/Pro among breast cancer cases. The genotypes Pro/Pro (OR=0.46; 95% CI=0.27-0.80, in comparison with Arg/Arg genotype) and Pro allele in dominant model (OR=0.65; 95% CI=0.45-0.92, in comparison with Arg/Arg genotype) were statistically associated with a protective effect for breast cancer among young Brazilian women. Also, family history of breast or ovary cancer (OR=2.18; 95% CI=1.37-3.46) and tobacco use (OR=1.74; 95% CI=1.14-2.68) were statistically associated with breast cancer. Conclusion: Further studies are necessary to confirm that Arg72Pro polymorphism can be a protective factor for breast cancer development among young women, since ethnicity can influence genotypes frequencies and the risk of developing breast cancer.
Downloads
References
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. doi: https://doi.org/10.3322/caac.21660 DOI: https://doi.org/10.3322/caac.21660
Anastasiadi Z, Lianos GD, Ignatiadou E, et al. Breast cancer in young women: an overview. Updat Surg. 2017;69(3):313-7. doi: https://doi.org/10.1007/s13304-017-0424-1 DOI: https://doi.org/10.1007/s13304-017-0424-1
Eiriz IF, Vaz Batista M, Cruz Tomás T, et al. Breast cancer in very young women--a multicenter 10-year experience. ESMO Open. 2021;6(1):100029. doi: https://doi.org/10.1016/j.esmoop.2020.100029 DOI: https://doi.org/10.1016/j.esmoop.2020.100029
Sopik V. International variation in breast cancer incidence and mortality in young women. Breast Cancer Res Treat. 2020;186(2):497-507. doi: https://doi.org/10.1007/s10549-020-06003-8 DOI: https://doi.org/10.1007/s10549-020-06003-8
Pinheiro AB, Lauter DS, Medeiros GC, et al. Câncer de mama em mulheres jovens: análise de 12.689 casos. Rev Bras Cancerol. 2013;59(3):3519. doi: https://doi.org/10.32635/2176-9745.RBC.2013v59n3.500 DOI: https://doi.org/10.32635/2176-9745.RBC.2013v59n3.500
Khushalani JS, Qin J, Ekwueme DU, et al. Awareness of breast cancer risk related to a positive family history and alcohol consumption among women aged 15-44 years in United States. Prev Med Rep. 2020;17:101029. doi: https://doi.org/10.1016/j.pmedr.2019.101029 DOI: https://doi.org/10.1016/j.pmedr.2019.101029
Natarajan R, Aljaber D, Au D, et al. Environmental exposures during puberty: window of breast cancer risk and epigenetic damage. Int J Environ Res Public Health. 2020;17(2):493. doi: https://doi.org/10.3390/ijerph17020493 DOI: https://doi.org/10.3390/ijerph17020493
Querzoli P, Albonico G, di Iasio MG, et al. Biophenotypes and survival of BRCA1 and TP53 deleted breast cancer in young women. Breast Cancer Res Treat. 2001;66(2):135-42. doi: https://doi.org/10.1023/a:1010643515095 DOI: https://doi.org/10.1023/A:1010643515095
Hollstein M, Sidransky D, Vogelstein B, et al. p53 mutations in human cancers. Science. 1991;253(5015):49-53. doi: https://doi.org/10.1126/science.1905840 DOI: https://doi.org/10.1126/science.1905840
Ozcelik H, Pinnaduwage D, Bull SB, et al. Type of TP53 mutation and ERBB2 amplification affects survival in node-negative breast cancer. Breast Cancer Res Treat. 2007;105(3):255-65. doi: https://doi.org/10.1007/s10549-006-9452-0 DOI: https://doi.org/10.1007/s10549-006-9452-0
Done SJ, Eskandarian S, Bull S, et al. p53 missense mutations in microdissected high-grade ductal carcinoma in situ of the breast. J Natl Cancer Inst. 2001;93(9):700-4. doi: https://doi.org/10.1093/jnci/93.9.700 DOI: https://doi.org/10.1093/jnci/93.9.700
Rohan TE, Li SQ, Hartwick R, et al. p53 alterations and protein accumulation in benign breast tissue and breast cancer risk: a cohort study. Cancer Epidemiol Biomarkers Prev. 2006;15(7):1316-23. doi: https://doi.org/10.1158/1055-9965.EPI-06-0195 DOI: https://doi.org/10.1158/1055-9965.EPI-06-0195
Sjögren S, Inganäs M, Norberg T, et al. The p53 gene in breast cancer: prognostic value of complementary DNA sequencing versus immunohistochemistry. J Natl Cancer Inst. 1996;88(3-4):173-82. doi: https://doi.org/10.1093/jnci/88.3-4.173 DOI: https://doi.org/10.1093/jnci/88.3-4.173
Donehower LA. p53: guardian AND suppressor of longevity? Exp Gerontol. 2005;40(1-2):7-9. doi: https://doi.org/10.1016/j.exger.2004.10.007 DOI: https://doi.org/10.1016/j.exger.2004.10.007
Santos SS, Jácome GPO, Koifman R, et al. CYP17, CYP19, and NQO1 genetic polymorphisms and breast cancer susceptibility in young women in Brazil. Br J Med Med Res. 2014;4(1):68-80. doi: https://doi.org/10.9734/BJMMR/2014/4254 DOI: https://doi.org/10.9734/BJMMR/2014/4254
Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215. doi: https://doi.org/10.1093/nar/16.3.1215 DOI: https://doi.org/10.1093/nar/16.3.1215
Lee JM, Lee YC, Yang SY, et al. Genetic polymorphisms of p53 and GSTP1,but not NAT2,are associated with susceptibility to squamous-cell carcinoma of the esophagus. Int J Cancer. 2000;89(5):458-64. doi: https://doi.org/10.1002/1097-0215(20000920)89:5%3C458::AID-IJC10%3E3.0.CO;2-R DOI: https://doi.org/10.1002/1097-0215(20000920)89:5<458::AID-IJC10>3.0.CO;2-R
Ramalho EA, Silva-Filho JL, Cartaxo MF, et al. Assessment of changes in the BRCA2 and P53 genes in breast invasive ductal carcinoma in northeast Brazil. Biol Res. 2014;47(1):3. doi: https://doi.org/10.1186/0717-6287-47-3 DOI: https://doi.org/10.1186/0717-6287-47-3
Liu J, Tang X, Li M, et al. Functional MDM4 rs4245739 genetic variant, alone and in combination with P53 Arg72Pro polymorphism, contributes to breast cancer susceptibility. Breast Cancer Res Treat. 2013;140(1):151-7. doi: https://doi.org/10.1007/s10549-013-2615-x DOI: https://doi.org/10.1007/s10549-013-2615-x
Suspitsin EN, Buslov KG, Grigoriev MY, et al. Evidence against involvement of p53 polymorphism in breast cancer predisposition. Int J Cancer. 2003;103(3):431-3. doi: https://doi.org/10.1002/ijc.10834 DOI: https://doi.org/10.1002/ijc.10834
Alawadi S, Ghabreau L, Alsaleh M, et al. P53 gene polymorphisms and breast cancer risk in Arab women. Med Oncol. 2011;28(3):709-15. doi: https://doi.org/10.1007/s12032-010-9505-4 DOI: https://doi.org/10.1007/s12032-010-9505-4
Almeida BC, Kleine JPFO, Camargo-Kosugi CM, et al. Analysis of polymorphisms in codons 11, 72 and 248 of TP53 in Brazilian women with breast cancer. Genet Mol Res. 2016;15(1). doi: https://doi.org/10.4238/gmr.15017055 DOI: https://doi.org/10.4238/gmr.15017055
Aoki MN, Herrera ACSA, Amarante MK, et al. CCR5 and p53 codon 72 gene polymorphisms: implications in breast cancer development. Int J Mol Med. 2009;23(3):429-35. doi: https://doi.org/10.3892/ijmm_00000148 DOI: https://doi.org/10.3892/ijmm_00000148
Damin APS, Frazzon APG, Damin DC, et al. Evidence for an association of TP53 codon 72 polymorphism with breast cancer risk. Cancer Detect Prev. 2006;30(6):523-9. doi: https://doi.org/10.1016/j.cdp.2006.09.007 DOI: https://doi.org/10.1016/j.cdp.2006.09.007
Mayorano MB. Polimorfismos dos genes TP53 e MDR-1, susceptibilidade e resposta à quimioterapia neoadjuvante em pacientes com câncer de mama [tese na Internet] Ribeirão Preto (SP): Faculdade de Medicina de Ribeirão Preto; 2008. doi: https://doi.org/10.11606/T.17.2008.tde-24102008-153640 DOI: https://doi.org/10.11606/T.17.2008.tde-24102008-153640
Melo MP, Bittelbrunn AC, Menke CH, et al. Analysis of the R72P polymorphism of the TP53 gene in patients with invasive ductal breast carcinoma. Mol Med Rep. 2009;2(5):793-7. doi: https://doi.org/10.3892/mmr_00000174 DOI: https://doi.org/10.3892/mmr_00000174
Ramalho EAVF. Avaliação de alterações nos genes p53, BRCA1 em Carcinoma Ductal Invasivo de Mama (CDI) [dissertação na Internet]. Recife (PE): Universidade Federal de Pernambuco; 2012 [acesso 2022 nov 23]. Disponível em: https://repositorio.ufpe.br/handle/123456789/10853
Soleimani A, Rahmani Y, Farshchian N, et al. The evaluation of p53 polymorphism at codon 72 and association with breast cancer in Iran: a systematic review and meta-analysis. J Cancer Prev. 2016;21(4):288-93. doi: https://doi.org/10.15430/JCP.2016.21.4.288 DOI: https://doi.org/10.15430/JCP.2016.21.4.288
Yulug I, Çolakoglu G, Bozkurt B, et al. p53 codon 72 and p21 codon 31 polymorphisms and susceptibility to breast cancer in the Turkish and Greek populations. EJC Suppl. 2005;3(2):80. doi: https://doi.org/10.1016/S1359-6349(05)80581-6 DOI: https://doi.org/10.1016/S1359-6349(05)80581-6
Gochhait S, Bukhari SIA, Bairwa N, et al. Implication of BRCA2 -26G>A 5’ untranslated region polymorphism in susceptibility to sporadic breast cancer and its modulation by p53codon 72 Arg>Pro polymorphism. Breast Cancer Res. 2007;9(5):R71. doi: https://doi.org/10.1186/bcr1780 DOI: https://doi.org/10.1186/bcr1780
Proestling K, Hebar A, Pruckner N, et al. The Pro allele of the p53 codon 72 polymorphism is associated with decreased intratumoral expression of BAX and p21, and increased breast cancer risk. PloS One. 2012;7(10):e47325. doi: https://doi.org/10.1371/journal.pone.0047325 DOI: https://doi.org/10.1371/journal.pone.0047325
Fukushima T, Tan X, Luo Y, et al. Relationship between blood levels of heavy metals and Parkinson’s disease in China. Neuroepidemiology. 2010;34(1):18-24. doi: https://doi.org/10.1159/000255462 DOI: https://doi.org/10.1159/000255462
Hossain A, Murshid GMM, Zilani MNH, et al. TP53 codon 72 polymorphism and breast cancer risk in Bangladeshi population. Breast Cancer. 2017;24(4):571-8. doi: https://doi.org/10.1007/s12282-016-0740-1 DOI: https://doi.org/10.1007/s12282-016-0740-1
Rodrigues P, Furriol J, Tormo E, et al. Epistatic interaction of Arg72Pro TP53 and −710 C/T VEGFR1 polymorphisms in breast cancer: predisposition and survival. Mol Cell Biochem. 2013;379:181-90. doi: https://doi.org/10.1007/s11010-013-1640-8 DOI: https://doi.org/10.1007/s11010-013-1640-8
Breast Cancer Association Consortium. Commonly studied single-nucleotide polymorphisms and breast cancer: results from the Breast Cancer Association Consortium. J Natl Cancer Inst. 2006;98(19):1382-96. doi: https://doi.org/10.1093/jnci/djj374 DOI: https://doi.org/10.1093/jnci/djj374
Gonçalves ML, Borja SM, Cordeiro JABL, et al. Association of the TP53 codon 72 polymorphism and breast cancer risk: a meta-analysis. Springerplus. 2014;3:749. doi: https://doi.org/10.1186/2193-1801-3-749 DOI: https://doi.org/10.1186/2193-1801-3-749
Diakite B, Kassogue Y, Dolo G, et al. p.Arg72Pro polymorphism of P53 and breast cancer risk: a meta-analysis of case-control studies. BMC Med Genet. 2020;21(1):206. doi: https://doi.org/10.1186/s12881-020-01133-8 DOI: https://doi.org/10.1186/s12881-020-01133-8
Baynes C, Healey CS, Pooley KA, et al. Common variants in the ATM, BRCA1, BRCA2, CHEK2 and TP53 cancer susceptibility genes are unlikely to increase breast cancer risk. Breast Cancer Res. 2007;9(2):R27. doi: https://doi.org/10.1186/bcr1669 DOI: https://doi.org/10.1186/bcr1669
Cavallone L, Arcand SL, Maugard C, et al. Haplotype analysis of TP53 polymorphisms, Arg72Pro and Ins16, in BRCA1 and BRCA2 mutation carriers of French Canadian descent. BMC Cancer. 2008;8:96. doi: https://doi.org/10.1186/1471-2407-8-96 DOI: https://doi.org/10.1186/1471-2407-8-96
Huang XE, Hamajima N, Katsuda N, et al. Association of p53 codon Arg72Pro and p73 G4C14-to-A4T14 at exon 2 genetic polymorphisms with the risk of Japanese breast cancer. Breast Cancer. 2003;10(4):307-11. doi: https://doi.org/10.1007/BF02967650 DOI: https://doi.org/10.1007/BF02967650
Lum SS, Chua HW, Li H, et al. MDM2 SNP309 G allele increases risk but the T allele is associated with earlier onset age of sporadic breast cancers in the Chinese population. Carcinogenesis. 2008;29(4):754-61. doi: https://doi.org/10.1093/carcin/bgn024 DOI: https://doi.org/10.1093/carcin/bgn024
Martin AM, Kanetsky PA, Amirimani B, et al. Germline TP53 mutations in breast cancer families with multiple primary cancers: is TP53 a modifier of BRCA1? J Med Genet. 2003;40(4):e34. doi: https://doi.org/10.1136/jmg.40.4.e34 DOI: https://doi.org/10.1136/jmg.40.4.e34
Osorio A, Pollán M, Pita G, et al. An evaluation of the polymorphisms Ins16bp and Arg72Pro in p53 as breast cancer risk modifiers in BRCA1 and BRCA2 mutation carriers. Br J Cancer. 2008;99(6):974-7. doi: https://doi.org/10.1038/sj.bjc.6604624 DOI: https://doi.org/10.1038/sj.bjc.6604624
Sinilnikova OM, Antoniou AC, Simard J, et al. The TP53 Arg72Pro and MDM2 309G>T polymorphisms are not associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Br J Cancer. 2009;101(8):1456-60. doi: https://doi.org/10.1038/sj.bjc.6605279 DOI: https://doi.org/10.1038/sj.bjc.6605279
Tommiska J, Eerola H, Heinonen M, et al. Breast cancer patients with p53 Pro72 homozygous genotype have a poorer survival. Clin Cancer Res. 2005;11(14):5098-103. doi: https://doi.org/10.1158/1078-0432.CCR-05-0173 DOI: https://doi.org/10.1158/1078-0432.CCR-05-0173
Thomas M, Kalita A, Labrecque S, et al. Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol. 1999;19(2):1092-100. doi: https://doi.org/10.1128/MCB.19.2.1092 DOI: https://doi.org/10.1128/MCB.19.2.1092
Petitjean A, Achatz MIW, Borresen-Dale AL, et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007;26(15):2157-65. doi: https://doi.org/10.1038/sj.onc.1210302 DOI: https://doi.org/10.1038/sj.onc.1210302
Chang-Claude J, Ambrosone CB, Lilla C, et al. Genetic polymorphisms in DNA repair and damage response genes and late normal tissue complications of radiotherapy for breast cancer. Br J Cancer. 2009;100(10):1680-6. doi: https://doi.org/10.1038/sj.bjc.6605036 DOI: https://doi.org/10.1038/sj.bjc.6605036
Dumont P, Leu JIJ, Della Pietra AC, et al. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet. 2003;33(3):357-65. doi: https://doi.org/10.1038/ng1093 DOI: https://doi.org/10.1038/ng1093
Francisco G, Menezes PR, Eluf-Neto J, et al. Arg72Pro TP53 polymorphism and cancer susceptibility: a comprehensive meta-analysis of 302 case-control studies. Int J Cancer. 2011;129(4):920-30. doi: https://doi.org/10.1002/ijc.25710 DOI: https://doi.org/10.1002/ijc.25710
Bergamaschi D, Samuels Y, Sullivan A, et al. iASPP preferentially binds p53 proline-rich region and modulates apoptotic function of codon 72-polymorphic p53. Nat Genet. 2006;38(10):1133-41. doi: https://doi.org/10.1038/ng1879 DOI: https://doi.org/10.1038/ng1879
Schmidt MK, Tommiska J, Broeks A, et al. Combined effects of single nucleotide polymorphisms TP53 R72P and MDM2 SNP309, and p53 expression on survival of breast cancer patients. Breast Cancer Res. 2009;11(6):R89. doi: https://doi.org/10.1186/bcr2460 DOI: https://doi.org/10.1186/bcr2460
American College of Obstetricians and Gynecologists; Modesitt SC, Lu K, et al. Practice bulletin no 182: hereditary breast and ovarian cancer syndrome. obstet gynecol. 2017;130(3):e110-26. doi: https://doi.org/10.1097/AOG.0000000000002296 DOI: https://doi.org/10.1097/AOG.0000000000002296
Brandt A, Lorenzo Bermejo J, Sundquist J, et al. Breast cancer risk in women who fulfill high-risk criteria: at what age should surveillance start? Breast Cancer Res Treat. 2010;121(1):133-41. doi: https://doi.org/10.1007/s10549-009-0486-y DOI: https://doi.org/10.1007/s10549-009-0486-y
Daly MB, Axilbund JE, Buys S, et al. Genetic/familial high-risk assessment: breast and ovarian. J Natl Compr Cancer Netw. 2010;8(5):562-94. doi: https://doi.org/10.6004/jnccn.2010.0043 DOI: https://doi.org/10.6004/jnccn.2010.0043
Franzoi MA, Schwartsmann G, Azevedo SJ, et al. Differences in breast cancer stage at diagnosis by ethnicity, insurance status, and family income in young women in the USA. J Racial Ethn Health Disparities. 2019;6(5):909-16. doi: https://doi.org/10.1007/s40615-019-00591-y DOI: https://doi.org/10.1007/s40615-019-00591-y
Vos JR, Bock GH, Teixeira N, et al. Proven non-carriers in BRCA families have an earlier age of onset of breast cancer. Eur J Cancer. 2013;49(9):2101-6. doi: https://doi.org/10.1016/j.ejca.2013.02.018 DOI: https://doi.org/10.1016/j.ejca.2013.02.018
Fabiano V, Mandó P, Rizzo M, et al. Breast cancer in young women presents with more aggressive pathologic characteristics: retrospective analysis from an Argentine National Database. JCO Glob Oncol. 2020;6:639-46. doi: https://doi.org/10.1200/JGO.19.00228 DOI: https://doi.org/10.1200/JGO.19.00228
Villarreal-Garza C, Platas A, Miaja M, et al. Young women with breast cancer in Mexico: results of the pilot phase of the joven & fuerte prospective cohort. JCO Glob Oncol. 2020;6:395-406. doi: https://doi.org/10.1200/JGO.19.00264 DOI: https://doi.org/10.1200/JGO.19.00264
Ambrosone CB. The promise and limitations of genome-wide association studies to elucidate the causes of breast cancer. Breast Cancer Res. 2007;9(6):114. doi: https://doi.org/10.1186/bcr1787 DOI: https://doi.org/10.1186/bcr1787
Gray JM, Rasanayagam S, Engel C, et al. State of the evidence 2017: an update on the connection between breast cancer and the environment. Environ Health. 2017;16(1):94. doi: https://doi.org/10.1186/s12940-017-0287-4 DOI: https://doi.org/10.1186/s12940-017-0287-4
Rodgers KM, Udesky JO, Rudel RA, et al. Environmental chemicals and breast cancer: an updated review of epidemiological literature informed by biological mechanisms. Environ Res. 2018;160:152-82. doi: https://doi.org/10.1016/j.envres.2017.08.045 DOI: https://doi.org/10.1016/j.envres.2017.08.045
DeRoo LA, Cummings P, Mueller BA. Smoking before the first pregnancy and the risk of breast cancer: a meta-analysis. Am J Epidemiol. 2011;174(4):390-402. doi: https://doi.org/10.1093/aje/kwr090 DOI: https://doi.org/10.1093/aje/kwr090
Jones ME, Schoemaker MJ, Wright LB, et al. Smoking and risk of breast cancer in the Generations Study cohort. Breast Cancer Res. 2017;19(1):118. doi: https://doi.org/10.1186/s13058-017-0908-4 DOI: https://doi.org/10.1186/s13058-017-0908-4
Kawai M, Malone KE, Tang MTC, et al. Active smoking and the risk of estrogen receptor-positive and triple-negative breast cancer among women ages 20 to 44 years. Cancer. 2014;120(7):1026-34. doi: https://doi.org/10.1002/cncr.28402 DOI: https://doi.org/10.1002/cncr.28402
Zeinomar N, Knight JA, Genkinger JM, et al. Alcohol consumption, cigarette smoking, and familial breast cancer risk: findings from the Prospective Family Study Cohort (ProF-SC). Breast Cancer Res. 2019;21(1):128. doi: https://doi.org/10.1186/s13058-019-1213-1 DOI: https://doi.org/10.1186/s13058-019-1213-1
Chelmow D, Pearlman MD, Young A, et al. Executive summary of the early-onset breast cancer evidence review conference. Obstet Gynecol. 2020;135(6):1457-8. doi: https://doi.org/10.1097/AOG.0000000000003889 DOI: https://doi.org/10.1097/AOG.0000000000003889
Tobacco smoke and involuntary smoking [Internet]. Lyon (FR): International Agency for Research on Cancer; 2004 [cited 2022 Dec 10]. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, no. 83). Available from: https://publications.iarc.fr/_publications/media/download/2636/1567f1ed6fa20d5ef35978ef5b585b63e6101379.pdf
Conway K, Edmiston SN, Cui L, et al. Prevalence and spectrum of p53 mutations associated with smoking in breast cancer. Cancer Res. 2002;62(7):1987-95.
Ma B, Stepanov I, Hecht SS. Recent studies on DNA adducts resulting from human exposure to tobacco smoke. Toxics. 2019;7(1):16. doi: https://doi.org/10.3390/toxics7010016 DOI: https://doi.org/10.3390/toxics7010016
Pflaum T, Hausler T, Baumung C, et al. Carcinogenic compounds in alcoholic beverages: an update. Arch Toxicol. 2016;90(10):2349-67. doi: https://doi.org/10.1007/s00204-016-1770-3 DOI: https://doi.org/10.1007/s00204-016-1770-3
Silva JDDE, Oliveira RR, Silva MT, et al. Breast cancer mortality in young women in Brazil. Front Oncol. 2020;10:569933. doi: https://doi.org/10.3389/fonc.2020.569933 DOI: https://doi.org/10.3389/fonc.2020.569933
Ministério da Saúde (BR), Secretaria de Vigilância em Saúde, Departamento de Análise em Saúde e Vigilância de Doenças Não Transmissíveis. Vigitel Brasil 2019: vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico: estimativas sobre frequência e distribuição sociodemográfica de fatores de risco e proteção para doenças crônicas nas capitais dos 26 estados brasileiros e no Distrito Federal em 2019 [Internet]. Brasília (DF): Ministério da Saúde; 2020 [acesso 2022 dez 10]. Disponível em: http://bvsms.saude.gov.br/bvs/publicacoes/vigitel_brasil_2019_vigilancia_fatores_risco.pdf
Published
How to Cite
Issue
Section
License
Os direitos morais e intelectuais dos artigos pertencem aos respectivos autores, que concedem à RBC o direito de publicação.
This work is licensed under a Creative Commons Attribution 4.0 International License.