Monoclonal Antibody Drugs for Cancer Treatment: a Brazilian Perspective

Authors

  • Júlia Teixeira de Menezes Universidade Federal de Santa Maria (UFSM), Curso de Farmácia. Santa Maria (RS), Brasil https://orcid.org/0009-0005-1446-8047
  • Maria Carolina Theisen Universidade Federal de Santa Maria (UFSM), Programa de Pós-Graduação em Ciências Farmacêuticas. Santa Maria (RS), Brasil. https://orcid.org/0000-0002-6181-9381
  • Vanessa da Costa Flores Hospital Universitário de Santa Maria (HUSM)/EBSERH. Santa Maria (RS), Brasil. https://orcid.org/0009-0000-6082-2573
  • Fernando Fumagalli Universidade Federal de Santa Maria (UFSM), Departamento de Farmácia Industrial. Santa Maria (RS), Brasil. https://orcid.org/0000-0002-0622-4481

DOI:

https://doi.org/10.32635/2176-9745.RBC.2024v70n1.4462

Keywords:

Brazilian Health Surveillance Agency, Drug Approval, Antineoplastic/standards, Antibodies, Monoclonal

Abstract

Introduction: Monoclonal antibodies (mAb) are an important therapeutic alternative in cancer treatment. However, access to this therapy is unequal in countries with heterogeneous incomes. Objective: Compare the mAb approved for cancer in the USA with those already approved in Brazil, as well as to discuss, through the mechanism of action, the available therapeutic alternatives. Method: The list of mAb approved by the US FDA were collected from previously publication and the agency’s site. Mechanism of action, date of approval and clinical indications were obtained from the drug labels on the FDA website and the date of ANVISA approval was obtained from this agency's website. The drugs were organized according to their structural characteristics (murine, chimeric, humanized and human) and separated into four major groups, according to their mechanism of action. Results: Until 2022, 48 mAb have been approved for cancer by the FDA. Of these, 37 have already been approved by ANVISA for use in Brazil, with an average time between approval abroad and in Brazil close to two years. The majority of these mAb are human or humanized (77%) and vary greatly in terms of their mechanism of action, with the B lymphocyte antigen CD20 and the immune checkpoint PD-1/PD-L1 as the main targets of the mAb evaluated. Conclusion: Although some drugs approved abroad are not yet approved in Brazil, the delay in the registration does not seem to be related to ANVISA's delay. Furthermore, for most of the cases of drugs not yet approved in Brazil, therapeutic alternatives are available.

Downloads

Download data is not yet available.

References

Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies. 2020;9(3):34. doi: https://doi.org/10.3390/antib9030034 DOI: https://doi.org/10.3390/antib9030034

Wang W, Wang E, Balthasar J. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548-58. doi: https://doi.org/10.1038/clpt.2008.170 DOI: https://doi.org/10.1038/clpt.2008.170

Schumacher D, Hackenberger CPR, Leonhardt H, et al. Current status: site-specific antibody drug conjugates. J Clin Immunol. 2016;36(S1):100-7. doi: https://doi.org/10.1007/s10875-016-0265-6 DOI: https://doi.org/10.1007/s10875-016-0265-6

Lythgoe MP. No New ‘Mabs’ in medicine - new nomenclature for monoclonal antibodies. British J Pharmacology. 2022;179(24):5338-9. doi: https://doi.org/10.1111/bph.15953 DOI: https://doi.org/10.1111/bph.15953

Weiner GJ. Building better monoclonal antibody-based therapeutics. Nat Rev Cancer. 2015:15(6):361-70. doi: https://doi.org/10.1038/nrc3930 DOI: https://doi.org/10.1038/nrc3930

Chiavenna SM, Jaworski JP, Vendrell A. State of the art in anti-cancer mabs. J Biomed Sci. 2017;24(1):15. doi: https://doi.org/10.1186/s12929-016-0311-y DOI: https://doi.org/10.1186/s12929-016-0311-y

Morin S, Segafredo G, Piccolis M, et al. Expanding access to biotherapeutics in low-income and middle-income countries through public health non-exclusive voluntary intellectual property licensing: considerations, requirements, and opportunities. Lancet Glob Health. 2023;11(1):e145-54. doi: https://doi.org/10.1016/S2214-109X(22)00460-0 DOI: https://doi.org/10.1016/S2214-109X(22)00460-0

FDA: Food and Drug Administration [Internet]. Maryland: Departamento de Saúde e Serviços Humanos dos Estados Unidos; c1906-2023. New Drugs at FDA: CDER’s new molecular entities and new therapeutic biological products. [acesso 2023 nov 9]. https://www.fda.gov/drugs/development-approval-process-drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products

FDA Label: FDALabel: Full-Text Search of Drug Product Labeling. Versão 2.8.1. Maryland: Departamento de Saúde e Serviços Humanos dos Estados Unidos; 2023. [acesso 2023 nov 13]. Disponível em: https://nctr-crs.fda.gov/fdalabel/ui/search

ANVISA: Agência Nacional de Vigilância Sanitária. Consulta Anvisa [sem versão]. Brasília, DF: Anvisa; [sem data]. [acesso 2023 nov 13]. Disponível em: https://consultas.anvisa.gov.br/#/medicamentos/

Conselho Nacional de Saúde (BR). Resolução n° 510, de 7 de abril de 2016. Dispõe sobre as normas aplicáveis a pesquisas em Ciências Humanas e Sociais cujos procedimentos metodológicos envolvam a utilização de dados diretamente obtidos com os participantes ou de informações identificáveis ou que possam acarretar riscos maiores do que os existentes na vida cotidiana, na forma definida nesta Resolução [Internet]. Diário Oficial da União, Brasília, DF. 2016 maio 24 [acesso 2023 ago 9]; Seção I:44. Disponível em: http://bvsms.saude.gov.br/bvs/saudelegis/cns/2016/res0510_07_04_2016.html

Leonel RM, Reis FMD, Andolfatto D, et al. Assistência farmacêutica a pacientes oncológicos em uso de anticorpos monoclonais em um hospital de referência do Oeste de Santa Catarina. Rev Bras Cancerol. 2022;68(3):e152316. https://doi.org/10.32635/2176-9745.RBC.2022v68n3.2316 DOI: https://doi.org/10.32635/2176-9745.RBC.2022v68n3.2316

Mullard A. FDA approves 100th monoclonal antibody product. Nat Rev Drug Discov. 2021;20(7):491-5. doi: https://doi.org/10.1038/d41573-021-00079-7 DOI: https://doi.org/10.1038/d41573-021-00079-7

Prasad V. The withdrawal of drugs for commercial reasons: the incomplete story of tositumomab. JAMA Intern Med. 2014;174(12):1887-8. https://doi.org/10.1001/jamainternmed.2014.5756 DOI: https://doi.org/10.1001/jamainternmed.2014.5756

European Medicines Agency. Portrazza: termo de autorização de introdução no mercado na União Europeia. 2021 jul 9. [acesso 2023 nov 9]. Disponível em: https://www.ema.europa.eu/en/documents/public-statement/public-statement-portrazza-expiry-marketing-authorisation-european-union_en.pdf

European Medicines Agency. MabCampath (alemtuzumab): Retirada da autorização de introdução no mercado na União Europeia. 2012 ago 14. [acesso 2023 nov 9]. Disponível em: https://www.ema.europa.eu/en/documents/public-statement/public-statement-mabcampath-alemtuzumab-withdrawal-marketing-authorisation-european-union_en.pdf

FDA: Food and Drug Administration [Internet]. Maryland: Departamento de Saúde e Serviços Humanos dos Estados Unidos; c1906-2023. Novartis Withdraws Chronic leukemia drug arzerra from non-U.S. markets. [acesso 2023 nov 9]. Disponível em: https://www.fdanews.com/articles/185419-novartis-withdraws-chronic-leukemia-drug-arzerra-from-non-us-markets

Bou Zerdan M, Bidikian AH, Alameh I, et al. Olaratumab’s Failure in Soft Tissue Sarcoma. Rare Tumors 2021;13:203636132110341. doi: https://doi.org/10.1177/20363613211034115 DOI: https://doi.org/10.1177/20363613211034115

Jin S, Sun Y, Liang X, et al. Emerging new therapeutic antibody derivatives for cancer treatment. Sig Transduct Target Ther. 2022;7(1):39. doi: https://doi.org/10.1038/s41392-021-00868-x DOI: https://doi.org/10.1038/s41392-021-00868-x

Moore KN, Martin LP, O’Malley DM, et al. A review of mirvetuximab soravtansine in the treatment of platinum-resistant ovarian cancer. Future Oncology. 2018;14(2):123-36. doi: https://doi.org/10.2217/fon-2017-0379 DOI: https://doi.org/10.2217/fon-2017-0379

Singh V, Sheikh A, Abourehab MAS et al. Dostarlimab as a miracle drug: rising hope against cancer treatment. Biosensors. 2022;12(8):617. doi: https://doi.org/10.3390/bios12080617 DOI: https://doi.org/10.3390/bios12080617

Liao JB, Gwin WR, Urban RR, et al. Pembrolizumab with low-dose carboplatin for recurrent platinum-resistant ovarian, fallopian tube, and primary peritoneal cancer: survival and immune correlates. J Immunother Cancer. 2021;9(9):e003122. doi: https://doi.org/10.1136/jitc-2021-003122 DOI: https://doi.org/10.1136/jitc-2021-003122

Oncology Times. FDA Approves Avastin Plus Chemotherapy for Ovarian Cancer. Oncol Times. 2014;36(23):10. doi: https://doi.org/10.1097/01.COT.0000459154.18451.1e DOI: https://doi.org/10.1097/01.COT.0000459154.18451.1e

Alasmari MM. A Review of margetuximab-based therapies in patients with HER2-Positive metastatic breast cancer. Cancers. 2022;15:(1):38. doi: https://doi.org/10.3390/cancers15010038 DOI: https://doi.org/10.3390/cancers15010038

Bardia A, Hurvitz AS, Tolaney SM, et al. Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer. N Engl J Med. 2021;384(16):1529-41. doi: https://doi.org/10.1056/NEJMoa2028485 DOI: https://doi.org/10.1056/NEJMoa2028485

Buske C, Weigert O, Dreyling M, et al. Current Status and Perspective of Antibody Therapy in Follicular Lymphoma. Hematológica. 2006;91(1):104-12.

Budde LE, Sehn LH, Matasar M, et al. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: a single-arm, multicentre, phase 2 study. Lancet Oncol. 2022;23(8):1055-65. doi: https://doi.org/10.1016/S1470-2045(22)00335-7 DOI: https://doi.org/10.1016/S1470-2045(22)00335-7

Deeks ED. Polatuzumab vedotin: first global approval. Drugs 2019;79(13):1467-75. doi: https://doi.org/10.1007/s40265-019-01175-0 DOI: https://doi.org/10.1007/s40265-019-01175-0

Düll J, Topp M, Salles G. The use of tafasitamab in diffuse large b-cell lymphoma. Therapeut Advanc Hematol. 2021;12:204062072110274. doi: https://doi.org/10.1177/20406207211027458 DOI: https://doi.org/10.1177/20406207211027458

Jain N, Stock W, Zeidan A, et al. Loncastuximab tesirine, an anti-cd19 antibody-drug conjugate, in relapsed/refractory b-cell acute lymphoblastic leukemia. Blood Advanc. 2020;4(3);449-57. doi: https://doi.org/10.1182/bloodadvances.2019000767 DOI: https://doi.org/10.1182/bloodadvances.2019000767

Romano A, Storti P, Marchica V, et al. Mechanisms of action of the new antibodies in use in multiple myeloma. Front Oncol. 2021;11:684561. doi: https://doi.org/10.3389/fonc.2021.684561 DOI: https://doi.org/10.3389/fonc.2021.684561

Moreno L, Perez C, Zabaleta A, et al. The mechanism of action of the anti-CD38 monoclonal antibody isatuximab in multiple myeloma. Clinic Cancer Res. 2019;25(10):3176-87. doi: https://doi.org/10.1158/1078-0432.CCR-18-1597 DOI: https://doi.org/10.1158/1078-0432.CCR-18-1597

Lassiter G, Bergeron C, Guedry R, et al. Belantamab mafodotin to treat multiple myeloma: a comprehensive review of disease, drug efficacy and side effects. Current Oncolog. 2021;28(1):640-60. doi: https://doi.org/10.3390/curroncol28010063 DOI: https://doi.org/10.3390/curroncol28010063

Moreau P, Garfall AL, Van De Donk NWCJ, et al. Teclistamab in relapsed or refractory multiple myeloma. N Engl J Med. 2022;387(6):495-505. doi: https://doi.org/10.1056/NEJMoa2203478 DOI: https://doi.org/10.1056/NEJMoa2203478

Markham A. Tisotumab vedotin: first approval. Drugs 2021;81(18):2141-7. doi: https://doi.org/10.1007/s40265-021-01633-8 DOI: https://doi.org/10.1007/s40265-021-01633-8

Song Z, Zou K, Zou L. Immune checkpoint blockade for locally advanced or recurrent/metastatic cervical cancer: an update on clinical data. front Oncol. 2022;12:1045481. doi: https://doi.org/10.3389/fonc.2022.1045481 DOI: https://doi.org/10.3389/fonc.2022.1045481

Tawbi HÁ, Schadendorf D, Lipson EJ, et. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med. 2022;386(1):24-34. doi: https://doi.org/10.1056/NEJMoa2109970 DOI: https://doi.org/10.1056/NEJMoa2109970

Bhandaru M, Rotte A. Monoclonal Antibodies for the Treatment of Melanoma: Present and Future Strategies. In: Steinitz M, editor. Human monoclonal antibodies: methods in molecular biology. New York: Springer New York; 2019. p 83-108. v.1904 doi: https://doi.org/10.1007/978-1-4939-8958-4_4 DOI: https://doi.org/10.1007/978-1-4939-8958-4_4

Tarhini A, Lo E, Minor DR. Releasing the brake on the immune system: ipilimumab in melanoma and other tumors. cancer biotherapy and radiopharmaceuticals. 2010;25(6):601-13. doi: https://doi.org/10.1089/cbr.2010.0865 DOI: https://doi.org/10.1089/cbr.2010.0865

Yang T, Xiong Y, Zeng Y, et al. Current status of immunotherapy for non-small cell lung cancer. Front Pharmacol. 2022;13:989461. doi: https://doi.org/10.3389/fphar.2022.989461 DOI: https://doi.org/10.3389/fphar.2022.989461

Dantoing E, Piton N, Salaün M, et al. Anti-PD1/PD-L1 immunotherapy for non-small cell lung cancer with actionable oncogenic driver mutations. IJMS. 2021;22(12):6288. doi: https://doi.org/10.3390/ijms22126288 DOI: https://doi.org/10.3390/ijms22126288

Cheng WC, Shen YC, Chen CL, et al. Bevacizumab versus Ramucirumab in EGFR-mutated metastatic non-small-cell lung cancer patients: a real-world observational study. Cancers. 2023;15(3):642. doi: https://doi.org/10.3390/cancers15030642 DOI: https://doi.org/10.3390/cancers15030642

Vyse S, Huang PH. Amivantamab for the treatment of EGFR Exon 20 insertion mutant non-small cell lung cancer. Expert Rev Anticancer Therap. 2022;22(1):3-16. doi: https://doi.org/10.1080/14737140.2022.2016397 DOI: https://doi.org/10.1080/14737140.2022.2016397

Furman WL. Monoclonal antibody therapies for high risk neuroblastoma. BTT 2021;15:205-19. doi: https://doi.org/10.2147/BTT.S267278 DOI: https://doi.org/10.2147/BTT.S267278

Massumoto CM, Pinheiro RF, Pinheiro Júnior ED, et al. Gemtuzumab Ozogamicina: uma opção no tratamento de leucemia mielóide aguda CD33+. Rev Bras Hematol Hemoter. 2004;26(4):235-8. doi: https://doi.org/10.1590/S1516-84842004000400002 DOI: https://doi.org/10.1590/S1516-84842004000400002

Contreras CF, Higham CS, Behnert A, et al. Clinical utilization of blinatumomab and inotuzumab immunotherapy in children with relapsed or refractory B‐acute lymphoblastic leukemia. Pediatr Blood Cancer. 2021;68(1):e28718. doi: https://doi.org/10.1002/pbc.28718 DOI: https://doi.org/10.1002/pbc.28718

Dhillon S. Moxetumomab pasudotox: first global approval. Drugs. 2018;78(16):1763-7. doi: https://doi.org/10.1007/s40265-018-1000-9 DOI: https://doi.org/10.1007/s40265-018-1000-9

Younes A, Yasothan U, Kirkpatrick P. Brentuximab Vedotin. Nat Rev Drug Discov. 2012;11(1):19-20. doi: https://doi.org/10.1038/nrd3629 DOI: https://doi.org/10.1038/nrd3629

Shirley M. Avelumab: a review in metastatic merkel cell carcinoma. Targ Oncol. 2018;13(3)409-16. doi: https://doi.org/10.1007/s11523-018-0571-4 DOI: https://doi.org/10.1007/s11523-018-0571-4

Alt M, Stecca C, Tobin S, et al. Enfortumab Vedotin in urothelial cancer. Therapeut Advanc Urol. 2020;12:175628722098019. doi: https://doi.org/10.1177/1756287220980192 DOI: https://doi.org/10.1177/1756287220980192

Powles T, Park SH, Voog E, et al. Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. N Engl J Med. 2020;383(13):1218-30. doi: https://doi.org/10.1056/NEJMoa2002788 DOI: https://doi.org/10.1056/NEJMoa2002788

García-Foncillas J, Sunakawa Y, Aderka D, et al. Distinguishing features of cetuximab and panitumumab in colorectal cancer and other solid tumors. Front Oncol. 2019;9:849. doi: https://doi.org/10.3389/fonc.2019.00849 DOI: https://doi.org/10.3389/fonc.2019.00849

Published

2024-04-22

How to Cite

1.
Menezes JT de, Theisen MC, Flores V da C, Fumagalli F. Monoclonal Antibody Drugs for Cancer Treatment: a Brazilian Perspective. Rev. Bras. Cancerol. [Internet]. 2024 Apr. 22 [cited 2024 Dec. 23];70(1):e-174462. Available from: https://rbc.inca.gov.br/index.php/revista/article/view/4462

Issue

Section

ORIGINAL ARTICLE