Assessment of Underreporting of Breast Cancer Mortality in Northeastern Brazil Over 40 Years
DOI:
https://doi.org/10.32635/2176-9745.RBC.2024v70n4.4792Keywords:
Mortality Registries, Breast Neoplasms/mortality, Underreporting, Data AccuracyAbstract
Introduction: Health planning and evaluation are compromised by poor-quality mortality data. Objective: To assess the stages of correction for breast cancer death records in the Northeast Region from 1980 to 2019. Method: Ecological study of breast cancer deaths among women aged 20 and over, residing in the States of the Northeast Region between 1980 and 2019. Data from the Mortality Information System of the Department of Informatics of the National Health System (SIM/DATASUS) were used. Corrections were made for unknown age, ill-defined causes, and incomplete cancer diagnoses. Proportional redistribution was carried out according to year, age group, and State. Underreporting was corrected using the extinct generations method. Mortality rates were calculated by age group and standardized using the direct method. Friedman tests and multiple comparisons with Bonferroni correction were used to assess differences in mortality rates across correction stages. Results: The average rate was 11.91/100 thousand women. A 61% increase (19.19/100 thousand) was observed after the correction stages. The greatest increase after corrections was in Maranhão (97%), and the smallest was in Pernambuco (26%). The highest average rates were in Pernambuco (19.99/100 thousand) and Ceará (19.33/100 thousand), while the lowest were in Maranhão (11.99/100 thousand) and Piauí (14.03/100 thousand). Significant differences were found in all localities between uncorrected and corrected breast cancer mortality rates (p < 0.01). Conclusion: After corrections, significant changes in breast cancer mortality rates were observed in all States of the Northeast. The greatest increases occurred in States with the poorest socioeconomic conditions, highlighting the importance of data correction.
Downloads
References
SIM: Sistema de Informação sobre Mortalidade [Internet]. Versão 3.2.1.2. Brasília (DF): DATASUS. [data desconhecida] - [acesso 2024 ago 3]. Disponível em: http://sim.saude.gov.br/default.asp
Organização Mundial da Saúde. CID-10: Classificação Estatística Internacional de Doenças e problemas relacionados à saúde. São Paulo: Edusp; 2008.
Gamarra CJ, Valente JG, Azevedo e Silva G. Correction for reported cervical cancer mortality data in Brazil, 1996-2005. Rev Saude Publica. 2010;44(4):629-38. doi: https://doi.org/10.1590/S0034-89102010000400006 DOI: https://doi.org/10.1590/S0034-89102010000400006
Lima EEC, Queiroz BL. Evolution of the deaths registry system in Brazil: Associations with changes in the mortality profile, under-registration of death counts, and ill-defined causes of death. Cad Saude Publica. 2014;30(8):1721-30.
doi: https://doi.org/10.1590/0102-311X00131113 DOI: https://doi.org/10.1590/0102-311X00131113
Queiroz BL, De Araujo FreireI FHM, Gonzaga MR, De Lima EEC. Estimativas do grau de cobertura e da mortalidade adulta (45q15) para as unidades da federação no Brasil entre 1980 e 2010. Rev Bras Epidemiol. 2017;20(Supl 1):21-33. doi: https://doi.org/10.1590/1980-5497201700050003 DOI: https://doi.org/10.1590/1980-5497201700050003
Paes NA. Quality of death statistics by unknown causes in Brazilian States. Rev Saude Publica. 2007;41(3):436-45. doi:
https://doi.org/10.1590/S0034-89102007000300016 DOI: https://doi.org/10.1590/S0034-89102007000300016
Silva GA, Gamarra CJ, Girianelli VR, et al. Cancer mortality trends in Brazilian state capitals and other municipalities between 1980 and 2006. Rev Saude Publica. 2011;45(6):1009-18. doi: https://doi.org/10.1590/S0034-89102011005000076 DOI: https://doi.org/10.1590/S0034-89102011005000076
Jorge MHPM, Gotlieb SLD, Laurenti R. O sistema de informações sobre mortalidade: problemas e propostas para o seu enfrentamento I - Mortes por causas naturais. Rev Bras Epidemiol. 2002;5(1):3-17. doi: http://dx.doi.org/10.1590/S1415-790X2002000200007 DOI: https://doi.org/10.1590/S1415-790X2002000200007
Lanza Queiroz B, Simões Agostinho C. Estimativas da mortalidade adulta para o brasil no período 1980/2000: uma abordagem metodológica comparativa [Internet]. 16 Encontro Nacional de Estudos Populacionais; 2008 Set 29-Out 3; Caxambu, MG, Brasil. Belo Horizonte: UFMG; 2008. [acesso 2024 ago 15]. Disponível em: https://www.researchgate.net/publication/239932426
Meira KC, Guimarães RM, Santos J, et al. Análise de efeito idade-período-coorte na mortalidade por câncer de mama no Brasil e regiões. Rev Panam Salud Publica. 2015;37(2):83-9.
Rocha-Brischiliari SC, Bulgarelli AF, Street ME, et al. The rise in mortality from breast cancer in young women:
trend analysis in Brazil. LoS One. 2017;12(1). doi: https://doi.org/10.1371/journal.pone.0168950 DOI: https://doi.org/10.1371/journal.pone.0168950
TABNET [Internet]. Brasília (DF): DATASUS. c2008 – [acesso 2024 maio 28]. Disponível em: https://datasus.saude.gov.br/informacoes-de-saude-tabnet/
Hill K. Estimating census and death registration completeness. Asian Pac Popul Forum. 1987;1(3):8-13.
Bennett NG, Horiuchi S. Estimating the Completeness of Death Registration in a Closed Population. Popul Index. 1981;47(2):207-21. doi: http://dx.doi.org/10.2307/2736447 DOI: https://doi.org/10.2307/2736447
Hill K, You D, Choi Y. Death distribution methods for estimating adult mortality: Sensitivity analysis with simulated data errors. Demogr Res. 2009;21(9):235-54. doi: https://doi.org/10.4054/DemRes.2009.21.9 DOI: https://doi.org/10.4054/DemRes.2009.21.9
Hill K, Choi Y, Timæus IM. Unconventional approaches to mortality estimation. Demogr Res. 2005;13(12):281-99. doi: https://doi.org/10.4054/DemRes.2005.13.12 DOI: https://doi.org/10.4054/DemRes.2005.13.12
Doll R, Payne PM, Waterhouse JAH. Introduction. In: Agência Internacional de Pesquisa em Câncer. Cancer Incidence in Five Continents. Lyon: IARC;1966. DOI: https://doi.org/10.1007/978-3-642-85849-9
SPSS®: Statistical Package for Social Science (SPSS) [Internet]. Versão 28.0. [Chicago]. International Business Machines Corporation. [acesso 2023 mar 9]. Disponível em: https://www.ibm.com/br-pt/spss?utm_content=SR
CWW&p1=Search&p4=43700077515785492&p5=p&gclid=CjwKCAjwgZCoBhBnEiwAz35Rwiltb7s14pOSLocnooMOQh9qAL59IHVc9WP4ixhNTVMjenRp3-aEgxoCubsQAvD_BwE&gclsrc=aw.ds
Conselho Nacional de Saúde (BR). Resolução n° 510, de 7 de abril de 2016. Dispõe sobre as normas aplicáveis a pesquisas em Ciências Humanas e Sociais cujos procedimentos metodológicos envolvam a utilização de dados diretamente obtidos com os participantes ou de informações identificáveis ou que possam acarretar riscos maiores do que os existentes na vida cotidiana, na forma
definida nesta Resolução [Internet]. Diário Oficial da União, Brasília, DF. 2016 maio 24 [acesso 2024 ago 3]; Seção I:44. Disponível em: http://bvsms.saude.gov.br/bvs/saudelegis/cns/2016/res0510_07_04_2016.html
Santos-Silva I. Políticas de controle do câncer de mama no Brasil: quais são os próximos passos? Cad Saude Publica. 2018;34(6):e00097018. doi: https://doi.org/10.1590/0102-311X00097018 DOI: https://doi.org/10.1590/0102-311x00097018
Medronho RA, Bloch KV, Luiz RR, et al. Epidemiologia. São Paulo: Atheneu; 2009.
Brass W. Methods for estimating fertility and mortality from limited and defective data. Chapel Hill: Occasional publication of the Centre for Population Studies; 1975.
Preston S, Coale AJ, Trussell J, et al. Estimating the completeness of reporting of adult deaths in populations that are approximately stable Popul Index. 1980;46(2):179-202. doi: https://doi.org/10.2307/2736122 DOI: https://doi.org/10.2307/2736122
Mathers C, Bernard C, Iburg K. Global burden of disease in 2002: data sources, methods and results. Geneva: WHO; 2003. (Global Programme on Evidence for Health Policy Discussion 54).
Cavalini LT, Ponce de Leon ACM. Correção de subregistros de óbitos e proporção de internações por causas mal definidas. Rev Saude Publica. 2007;41(1):85-93. doi: https://doi.org/10.1590/S0034-89102007000100012 DOI: https://doi.org/10.1590/S0034-89102007000100012
Preston SH, Elo IT, Stewart Q. Effects of age misreporting on mortality estimates at older ages. Popul Stud (NY). 1999;53(2):165-77. DOI: https://doi.org/10.1080/00324720308075
Gomes Andrade P, Gomes C, Veras RP, et al. Evolução da qualidade da declaração da idade na América Latina e Caribe: uma proposta de escolha de métodos a partir da estrutura etária [Internet]. 7 Congresso da Associação Latino-Americana de População (ALAP) e o 20 Encontro Nacional de Estudos Populacionais (ABEP); 2016 Out 17-22.; Foz do Iguaçu, Brasil. Caxambu: ALAP; 2016. [acesso 2024 ago 15]. Disponível em: https://files.alapop.org/congreso7/files/pdf/313-202.pdf
Silva Júnior, WP. Diferenciais regionais na mortalidade adulta por escolaridade no Brasil em 2010 [dissertação]. Natal: Universidade Federal do Rio Grande do Norte; 2018.
Paes NA, Gouveia JF. Recovery of the main causes of death in the Northeast of Brazil: impact on life expectancy. Rev Saude Publica. 2010;44(2):301-9. doi: https://doi.org/10.1590/s0034-89102010000200010 DOI: https://doi.org/10.1590/S0034-89102010000200010
Published
How to Cite
Issue
Section
License
Os direitos morais e intelectuais dos artigos pertencem aos respectivos autores, que concedem à RBC o direito de publicação.

This work is licensed under a Creative Commons Attribution 4.0 International License.