Science, Technology and Innovations in Oncology

Authors

  • Alessandra de Sá Earp Siqueira Departamento de Ciência e Tecnologia da Secretaria de Ciência, Tecnologia e Insumos Estratégicos do Ministério da Saúde (Decit/SCTIE/MS). Brasília (DF), Brasil. https://orcid.org/0000-0003-3852-7580
  • Amanda Nogueira Brum Fontes Departamento de Ciência e Tecnologia da Secretaria de Ciência, Tecnologia e Insumos Estratégicos do Ministério da Saúde (Decit/SCTIE/MS). Brasília (DF), Brasil. https://orcid.org/0000-0002-3472-7684
  • Graziella Santana Feitosa Figueiredo Departamento de Ciência e Tecnologia da Secretaria de Ciência, Tecnologia e Insumos Estratégicos do Ministério da Saúde (Decit/SCTIE/MS). Brasília (DF), Brasil. https://orcid.org/0000-0002-4416-0183
  • Helena Ipê Pinheiro Guimarães Departamento de Ciência e Tecnologia da Secretaria de Ciência, Tecnologia e Insumos Estratégicos do Ministério da Saúde (Decit/SCTIE/MS). Brasília (DF), Brasil. https://orcid.org/0000-0001-7878-0084
  • Julianna Peixoto Treptow Departamento de Ciência e Tecnologia da Secretaria de Ciência, Tecnologia e Insumos Estratégicos do Ministério da Saúde (Decit/SCTIE/MS). Brasília (DF), Brasil. https://orcid.org/0000-0001-9400-2303
  • Max Nóbrega de Menezes Costa Departamento de Ciência e Tecnologia da Secretaria de Ciência, Tecnologia e Insumos Estratégicos do Ministério da Saúde (Decit/SCTIE/MS). Brasília (DF), Brasil. https://orcid.org/0000-0002-2338-7768
  • Priscilla Azevedo Souza Departamento de Ciência e Tecnologia da Secretaria de Ciência, Tecnologia e Insumos Estratégicos do Ministério da Saúde (Decit/SCTIE/MS). Brasília (DF), Brasil. https://orcid.org/0000-0002-3618-9509
  • Rodrigo Theodoro Rocha Departamento de Ciência e Tecnologia da Secretaria de Ciência, Tecnologia e Insumos Estratégicos do Ministério da Saúde (Decit/SCTIE/MS). Brasília (DF), Brasil. https://orcid.org/0000-0001-5624-8644

DOI:

https://doi.org/10.32635/2176-9745.RBC.2022v68n2.2809

Keywords:

Medical Oncology, Genome, Human, Human Genome Project, Health Sciences, Technology, and Innovation Management, Editorial

Abstract

The first major groundbreaking of genomic and precision medicine happened in the beginning of 2000. The Human Genome Project (HGP) initiated in 1990 and completed in 2003, has not only significantly impacted our understanding about the architecture of the human genome and its correlation with different diseases but pushed forward a multidisciplinary technological revolution. Twenty years later, they are still innovative worldwide as its implementation by health systems is not simple requiring an array of complex actions and initiatives. The rapid progress of molecular diagnosis, advanced therapies and precision medicine highlight the necessity of translating the knowledge to optimize the applicability by health services for the population. Genomas Brasil presents a proof of concept which will offer important data to demonstrate the worth of precision medicine for SUS, supporting future decision-making for implementation, estimation and organization for the public health system. The program is pivotal for a firm transition to a precision-medicine based health system, a critical step to adjust the strategies, methodologies, protocols and management of risks and potential hurdles to be dealt with. It intends to revolutionize SUS through cutting-edge knowledge strategies to provide the most accurate and modern healthcare to the Brazilian population, with solid transformations for health caring workforce to foster scientific knowledge and the national health industry.

Downloads

Download data is not yet available.

References

Collins FS, Fink L. The human genome project. Alcohol Health Res World [Internet]. 1995 [cited 2022 May 27];19(3):190-5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6875757/pdf/arhw-19-3-190.pdf

Bertier G, Carrot-Zhang J, Ragoussis V, et al. Integrating precision cancer medicine into healthcare-policy, practice, and research challenges. Genome Med. 2016;8(1):108. doi: https://doi.org/10.1186/s13073-016-0362-4 DOI: https://doi.org/10.1186/s13073-016-0362-4

Levit LA, Kim ES, McAneny BL, et al. Implementing precision medicine in community-based oncology programs: three models. J Oncol Pract. 2019;15(6):325-9. doi: https://doi.org/10.1200/JOP.18.00661 DOI: https://doi.org/10.1200/JOP.18.00661

Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: https://doi.org/10.3322/caac.21492 DOI: https://doi.org/10.3322/caac.21492

Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7-33. doi: https://doi.org/10.3322/caac.21654 DOI: https://doi.org/10.3322/caac.21654

Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49. doi: https://doi.org/10.3322/caac.21660 DOI: https://doi.org/10.3322/caac.21660

De Maria Marchiano R, Di Sante G, Piro G, et al. Translational research in the era of precision medicine: where we are and where we will go. J Pers Med. 2021;11(3):216. doi: https://doi.org/10.3390/jpm11030216 DOI: https://doi.org/10.3390/jpm11030216

Wetterstrand KA. DNA sequencing costs: data from the NHGRI Genome Sequencing Program (GSP) [Internet]. Bethesda (MD): National Human Genome Research Institute; [last updated 2021 Nov 1; cited 2022 May 27]. Available from: https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

Trotman J, Armstrong R, Firth H, et al. The NHS England 100,000 Genomes Project: feasibility and utility of centralised genome sequencing for children with cancer. Br J Cancer. 2022. doi: https://doi.org/10.1038/s41416-022-01788-5 DOI: https://doi.org/10.1038/s41416-022-01788-5

Ramirez AH, Sulieman L, Schlueter DJ, et al. The All of Us Research Program: data quality, utility, and diversity. MedRxiv [Preprint]. 2020 June 3. doi: https://doi.org/10.1101/2020.05.29.20116905 DOI: https://doi.org/10.1101/2020.05.29.20116905

Vimal M, Devi WP, McGonigle I. GenomeAsia100K: Singapore builds national science with Asian DNA. East Asian Sci Technol Soc. 2021;15(2):238-59. doi: https://doi.org/10.1080/18752160.2021.1896138 DOI: https://doi.org/10.1080/18752160.2021.1896138

Stark Z, Boughtwood T, Phillips P, et al. Australian genomics: a federated model for integrating genomics into healthcare. Am J Hum Genet. 2019;105(1):7-14. doi: https://doi.org/10.1016/j.ajhg.2019.06.003 DOI: https://doi.org/10.1016/j.ajhg.2019.06.003

Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402-16. doi: https://doi.org/10.1001/jama.2017.7112 DOI: https://doi.org/10.1001/jama.2017.7112

Schrader KA, Cheng DT, Joseph V, et al. Germline variants in targeted tumor sequencing using matched normal DNA. JAMA Oncol. 2016;2(1):104-11. doi: https://doi.org/10.1001/jamaoncol.2015.5208 DOI: https://doi.org/10.1001/jamaoncol.2015.5208

Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell. 2018;175(2):313-26. doi: https://doi.org/10.1016/j.cell.2018.09.035 DOI: https://doi.org/10.1016/j.cell.2018.09.035

Hindorff LA, Bonham VL, Brody LC, et al. Prioritizing diversity in human genomics research. Nat Rev Genet. 2018;19(3):175-85. doi: https://doi.org/10.1038/nrg.2017.89 DOI: https://doi.org/10.1038/nrg.2017.89

Martin AR, Kanai M, Kamatani Y, et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet. 2019;51:584-91. doi: https://doi.org/10.1038/s41588-019-0379-x DOI: https://doi.org/10.1038/s41588-019-0379-x

Bentley AR, Callier S, Rotimi CN. Diversity and inclusion in genomic research: why the uneven progress? J Community Genet. 2017;8(4):255-66. doi: https://doi.org/10.1007/s12687-017-0316-6 DOI: https://doi.org/10.1007/s12687-017-0316-6

Marrero AR, Leite FPN, Carvalho BA, et al. Heterogeneity of the genome ancestry of individuals classified as White in the State of Rio Grande do Sul, Brazil. Am J Hum Biol. 2005;17(4):496-506. doi: https://doi.org/10.1002/ajhb.20404 DOI: https://doi.org/10.1002/ajhb.20404

Ministério da Saúde (BR). Portaria nº 1.949, de 4 de agosto de 2020. Altera a Portaria de Consolidação nº 5/GM/MS, de 28 de setembro de 2017, para instituir o Programa Nacional de Genômica e Saúde de Precisão - Genomas Brasil e o Conselho Deliberativo do Programa Genomas Brasil [Internet]. Diário Oficial da União, Brasília, DF. 2020 ago 5 [acesso 2022 maio 27]; Seção 1:87. Disponível em: http://bvsms.saude.gov.br/bvs/saudelegis/gm/2020/prt1949_05_08_2020.html

Published

2022-06-21

How to Cite

1.
Siqueira A de SE, Fontes ANB, Figueiredo GSF, Guimarães HIP, Treptow JP, Costa MN de M, Souza PA, Rocha RT. Science, Technology and Innovations in Oncology. Rev. Bras. Cancerol. [Internet]. 2022 Jun. 21 [cited 2024 Jul. 22];68(2):e-002809. Available from: https://rbc.inca.gov.br/index.php/revista/article/view/2809

Most read articles by the same author(s)