Mathematical Modeling of Immunotherapy for Tumors: Computational Analysis of Adoptive Cell Therapy with Interleukin-2

Authors

  • Jeferson Miguel Melo Antunes Universidade Federal de Juiz de Fora (UFJF), Faculdade de Medicina. Juiz de Fora (MG), Brasil. https://orcid.org/0000-0003-1388-9825
  • Valéria Mattos da Rosa Universidade Federal de Juiz de Fora (UFJF), Instituto de Ciências Exatas, Departamento de Matemática. Juiz de Fora (MG), Brasil. https://orcid.org/0000-0002-6007-0380

DOI:

https://doi.org/10.32635/2176-9745.RBC.2024v70n1.4446

Keywords:

Models, Theoretical, Computer Simulation, Immunotherapy, Adoptive, Neoplasms/epidemiology

Abstract

Introduction: Cancer is one of the main causes of death in the world, but there are still unknown aspects of its dynamics. An important tool for its study is mathematical modeling, which analyzes and projects tumor behavior. A model must be validated in silico to be useful. Objective: Validate a mathematical model for immunotherapy against tumors, to evaluate how the cellular composition of the adoptive cell therapy interferes with the response and which is the most appropriate scheme for administering interleukin-2 in terms of dose and time of use. Method: An ordinary differential equation model was developed. The parameters were obtained from the literature, adapted or simulated. The solutions were found using Octave 8.1.0 software and compared with the literature. Results: The results, compared with data from clinical trials and other modeling, show that the model is valid for reproducing tumor dynamics. In addition, infusion of adoptive cell therapy with a predominance of CD8+ T lymphocytes appears slightly more advantageous than infusion with a predominance of CD4+ T lymphocytes; high but tolerable doses of interleukin-2 generate a better anti-tumor response; and longer administration of interleukin-2 maximizes the response. Conclusion: The model is valid for studying tumor dynamics and can help in the development of new research. In addition, immunotherapy with a predominance of CD8+ T lymphocytes over CD4+ T lymphocytes and with interleukin-2 in higher doses and for longer periods, respecting tolerance, showed better results in silico.

Downloads

Download data is not yet available.

References

Martins WA, Rosa MLG, Matos RC, et al. Tendência das taxas de mortalidade por doença cardiovascular e câncer entre 2000 e 2015 nas capitais mais populosas das cinco regiões do Brasil: mortalidade por doença cardiovascular e câncer. Arq Bras Cardiol. 2020;114(2):199-206. doi: https://doi.org/10.36660/abc.20180304 DOI: https://doi.org/10.36660/abc.20180304

Unni P, Seshaiyer P. Mathematical modeling, analysis, and simulation of tumor dynamics with drug interventions. Comput Math Methods Med. 2019;2019:4079298. doi: https://doi.org/10.1155/2019/4079298 DOI: https://doi.org/10.1155/2019/4079298

Woelke AL, Murgueitio MS, Preissner R. Theoretical modeling techniques and their impact on tumor immunology. Clin Dev Immunol. 2010;2010:271794. doi: https://doi.org/10.1155/2010/271794 DOI: https://doi.org/10.1155/2010/271794

Pillai N, Craig M, Dokoumetzidis A, et al. Chaos synchronization and Nelder-Mead search for parameter estimation in nonlinear pharmacological systems: Estimating tumor antigenicity in a model of immunotherapy. Prog Biophys Mol Biol. 2018;139:23-30. doi: https://doi.org/10.1016/j.pbiomolbio.2018.06.006 DOI: https://doi.org/10.1016/j.pbiomolbio.2018.06.006

Tabatabai MA, Eby WM, Singh KP, et al. T model of growth and its application in systems of tumor-immune dynamics. Math Biosci Eng. 2013;10(3):925-38. doi: https://doi.org/10.3934/mbe.2013.10.925 DOI: https://doi.org/10.3934/mbe.2013.10.925

Usman A, Cunningham C. Application of the mathematical model of tumor-immune interactions for IL-2 Adoptive Immunotherapy to studies on patients with Metastatic Melanoma or Renal Cell Cancer. Rose-Hulman Underg Math J. 2005;6(2):1-24.

Kirschner D, Panetta JC. Modeling immunotherapy of the tumor-immune interaction. J Math Biol. 1998;37:235-52. doi: https://doi.org/10.1007/s002850050127 DOI: https://doi.org/10.1007/s002850050127

Rosenberg SA, Yang JC, Topalian SL, et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA. 1994;271(12):907-13. doi: https://doi.org/10.1001/jama.1994.03510360033032 DOI: https://doi.org/10.1001/jama.271.12.907

Rohaan MW, van den Berg JH, Kvistborg P, et al. Adoptive transfer of tumor-infiltrating lymphocytes in melanoma: a viable treatment option. J Immunother Cancer. 2018;6:102. doi: https://doi.org/10.1186/s40425-018-0391-1 DOI: https://doi.org/10.1186/s40425-018-0391-1

Goff SL, Dudley ME, Citrin DE, et al. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J Clin Oncol. 2016;34(20):2389-97. doi: https://doi.org/10.1200/jco.2016.66.7220 DOI: https://doi.org/10.1200/JCO.2016.66.7220

Radvanyi LG, Bernatchez C, Zhang M, et al. Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin Cancer Res. 2012;18(24):6758-70. doi: https://doi.org/10.1158/1078-0432.CCR-12-1177 DOI: https://doi.org/10.1158/1078-0432.CCR-12-1177

Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550-7. doi: https://doi.org/10.1158/1078-0432.ccr-11-0116 DOI: https://doi.org/10.1158/1078-0432.CCR-11-0116

Dafni U, Michielin O, Lluesma SM, et al. Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: a systematic review and meta-analysis. Ann Oncol. 2019;30(12):1902-13. doi: https://doi.org/10.1093/annonc/mdz398 DOI: https://doi.org/10.1093/annonc/mdz398

Caravagna G, Barbuti R, d’Onofrio A. Fine-tuning anti-tumor immunotherapies via stochastic simulations. BMC Bioinformatics. 2012;13(Suppl 4):S8. doi: https://doi.org/10.1186/1471-2105-13-S4-S8 DOI: https://doi.org/10.1186/1471-2105-13-S4-S8

Kronik N, Kogan Y, Schlegel PG, et al. Improving T-cell immunotherapy for melanoma through a mathematically motivated strategy: efficacy in numbers? Efficacy in numbers? J Immunother. 2012;35(2):116-24. doi: https://doi.org/10.1097/CJI.0b013e318236054c DOI: https://doi.org/10.1097/CJI.0b013e318236054c

Caravagna G, d’Onofrio A, Milazzo P, et al. Tumour suppression by immune system through stochastic oscillations. J Theor Biol. 2010;265(3):336-45. doi: https://doi.org/10.1016/j.jtbi.2010.05.013 DOI: https://doi.org/10.1016/j.jtbi.2010.05.013

De Boer RJ, Hogeweg P, Dullens HF, et al. Macrophage T lymphocyte interactions in the anti-tumor immune response: a mathematical model. J Immunol. 1985;134(4):2748-58. doi: https://doi.org/10.4049/jimmunol.134.4.2748 DOI: https://doi.org/10.4049/jimmunol.134.4.2748

Kuznetsov VA, Makalkin IA, Taylor MA, et al. Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull Math Biol. 1994;56:295-321. doi: https://doi.org/10.1007/bf02460644 DOI: https://doi.org/10.1016/S0092-8240(05)80260-5

Besser MJ, Shapira-Frommer R, Treves AJ, et al. Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin Cancer Res. 2010;16(9):2646-55. doi: https://doi.org/10.1158/1078-0432.CCR-10-0041 ‌ DOI: https://doi.org/10.1158/1078-0432.CCR-10-0041

Rosenberg SA, Restifo NP, Yang JC, et al. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8:299-308. doi: https://doi.org/10.1038/nrc2355 DOI: https://doi.org/10.1038/nrc2355

Rawlings JB, Ekerdt JG. GNU Octave [Internet]. Versão 8.1.0. Madison, Austin: John W. Eaton; 2024. [acesso 2023 set 13]. Disponível em: https://octave.org/download

Conselho Nacional de Saúde (BR). Resolução n° 510, de 7 de abril de 2016. Dispõe sobre as normas aplicáveis a pesquisas em Ciências Humanas e Sociais cujos procedimentos metodológicos envolvam a utilização de dados diretamente obtidos com os participantes ou de informações identificáveis ou que possam acarretar riscos maiores do que os existentes na vida cotidiana, na forma definida nesta Resolução [Internet]. Diário Oficial da União, Brasília, DF. 2016 maio 24 [acesso 2023 set 14]; Seção I:44. Disponível em: http://bvsms.saude.gov.br/bvs/saudelegis/cns/2016/res0510_07_04_2016.html

Alvarado CSM. Estudo e implementação de métodos de validação de modelos matemáticos aplicados no desenvolvimento de sistemas de controle de processos industriais [tese]. São Paulo: Universidade de São Paulo; 2017. doi: https://doi.org/10.11606/T.3.2017.tde-05092017-092437 DOI: https://doi.org/10.11606/T.3.2017.tde-05092017-092437

Andersen R, Donia M, Ellebaek E, et al. Long-lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumor-infiltrating lymphocytes and an attenuated IL2 regimen. Clin Cancer Res. 2016;22(15):3734-45. doi: https://doi.org/10.1158/1078-0432.ccr-15-1879 DOI: https://doi.org/10.1158/1078-0432.CCR-15-1879

Saltelli A, Bammer G, Bruno I, et al. Five ways to ensure that models serve society: a manifesto. Nature. 2020;582(7813):482-4. doi: https://doi.org/10.1038/d41586-020-01812-9 DOI: https://doi.org/10.1038/d41586-020-01812-9

Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565-70. doi: https://doi.org/10.1126/science.1203486 DOI: https://doi.org/10.1126/science.1203486

Tran E, Turcotte S, Gros A, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 2014;344(6184):641-5. doi: https://doi.org/10.1126/science.1251102 DOI: https://doi.org/10.1126/science.1251102

Gattinoni L, Klebanoff CA, Restifo NP. Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer. 2012;12(10):671-84. doi: https://doi.org/10.1038/nrc3322 DOI: https://doi.org/10.1038/nrc3322

Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol. 2014;192(12):5451-8. doi: https://doi.org/10.4049/jimmunol.1490019 DOI: https://doi.org/10.4049/jimmunol.1490019

Abbas AK, Lichtman AH. Imunologia básica. Funções e distúrbios do sistema imunológico. 3. ed. Rio de Janeiro: Elsevier Editora Ltda; 2009.

Marabondo S, Kaufman HL. High-dose interleukin-2 (IL-2) for the treatment of melanoma: safety considerations and future directions. Expert Opin Drug Saf. 2017;16:1347-57. doi: https://doi.org/10.1080/14740338.2017.1382472 DOI: https://doi.org/10.1080/14740338.2017.1382472

Conlon KC, Lugli E, Welles HC, et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J Clin Oncol. 2015;33:74-82. doi: https://doi.org/10.1200/JCO.2014.57.3329 DOI: https://doi.org/10.1200/JCO.2014.57.3329

Published

2024-04-15

How to Cite

1.
Antunes JMM, Rosa VM da. Mathematical Modeling of Immunotherapy for Tumors: Computational Analysis of Adoptive Cell Therapy with Interleukin-2. Rev. Bras. Cancerol. [Internet]. 2024 Apr. 15 [cited 2024 Jul. 22];70(1):e-164446. Available from: https://rbc.inca.gov.br/index.php/revista/article/view/4446

Issue

Section

ORIGINAL ARTICLE