Modelización Matemática de la Inmunoterapia de Tumores: Análisis Computacional de la Terapia Celular Adoptiva con Interleucina-2
DOI:
https://doi.org/10.32635/2176-9745.RBC.2024v70n1.4446Palabras clave:
Modelos Teóricos, Simulación por Computador, Inmunoterapia Adoptiva, Neoplasias/epidemiologíaResumen
Introducción: El cáncer es una de las principales causas de muerte en todo el mundo, pero aún se desconocen aspectos de su dinámica. Una herramienta importante para su estudio es la modelización matemática, que analiza y proyecta el comportamiento tumoral. Para que un modelo sea útil debe ser validado in silico. Objetivo: Validar un modelo matemático de inmunoterapia contra tumores, evaluar cómo interfiere la composición celular de la terapia celular adoptiva en la respuesta y cuál es el esquema más adecuado de administración de interleuquina-2 en cuanto a dosis y tiempo de utilización. Método: Se desarrolló un modelo de ecuaciones diferenciales ordinarias. Los parámetros se obtuvieron de la literatura, se adaptaron o se simularon. Las soluciones se hallaron con el software Octave 8.1.0 y se compararon con las de la bibliografía. Resultados: Los resultados, comparados con datos de ensayos clínicos y otras modelizaciones, muestran que el modelo es válido para reproducir la dinámica tumoral. Además, la infusión de terapia celular adoptiva con predominio de linfocitos T CD8+ parece ligeramente más ventajosa que la infusión con predominio de linfocitos T CD4+; dosis altas pero tolerables de interleuquina-2 generan una mejor respuesta antitumoral; y la administración de interleuquina-2 durante más tiempo maximiza la respuesta. Conclusión: El modelo es válido para estudiar la dinámica tumoral y podría ayudar en el desarrollo de nuevas investigaciones. Además, la inmunoterapia con predominio de linfocitos T CD8+ sobre linfocitos T CD4+ y con interleuquina-2 en dosis más altas y durante más tiempo, respetando la tolerancia, mostró mejores resultados in silico.
Descargas
Citas
Martins WA, Rosa MLG, Matos RC, et al. Tendência das taxas de mortalidade por doença cardiovascular e câncer entre 2000 e 2015 nas capitais mais populosas das cinco regiões do Brasil: mortalidade por doença cardiovascular e câncer. Arq Bras Cardiol. 2020;114(2):199-206. doi: https://doi.org/10.36660/abc.20180304 DOI: https://doi.org/10.36660/abc.20180304
Unni P, Seshaiyer P. Mathematical modeling, analysis, and simulation of tumor dynamics with drug interventions. Comput Math Methods Med. 2019;2019:4079298. doi: https://doi.org/10.1155/2019/4079298 DOI: https://doi.org/10.1155/2019/4079298
Woelke AL, Murgueitio MS, Preissner R. Theoretical modeling techniques and their impact on tumor immunology. Clin Dev Immunol. 2010;2010:271794. doi: https://doi.org/10.1155/2010/271794 DOI: https://doi.org/10.1155/2010/271794
Pillai N, Craig M, Dokoumetzidis A, et al. Chaos synchronization and Nelder-Mead search for parameter estimation in nonlinear pharmacological systems: Estimating tumor antigenicity in a model of immunotherapy. Prog Biophys Mol Biol. 2018;139:23-30. doi: https://doi.org/10.1016/j.pbiomolbio.2018.06.006 DOI: https://doi.org/10.1016/j.pbiomolbio.2018.06.006
Tabatabai MA, Eby WM, Singh KP, et al. T model of growth and its application in systems of tumor-immune dynamics. Math Biosci Eng. 2013;10(3):925-38. doi: https://doi.org/10.3934/mbe.2013.10.925 DOI: https://doi.org/10.3934/mbe.2013.10.925
Usman A, Cunningham C. Application of the mathematical model of tumor-immune interactions for IL-2 Adoptive Immunotherapy to studies on patients with Metastatic Melanoma or Renal Cell Cancer. Rose-Hulman Underg Math J. 2005;6(2):1-24.
Kirschner D, Panetta JC. Modeling immunotherapy of the tumor-immune interaction. J Math Biol. 1998;37:235-52. doi: https://doi.org/10.1007/s002850050127 DOI: https://doi.org/10.1007/s002850050127
Rosenberg SA, Yang JC, Topalian SL, et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA. 1994;271(12):907-13. doi: https://doi.org/10.1001/jama.1994.03510360033032 DOI: https://doi.org/10.1001/jama.271.12.907
Rohaan MW, van den Berg JH, Kvistborg P, et al. Adoptive transfer of tumor-infiltrating lymphocytes in melanoma: a viable treatment option. J Immunother Cancer. 2018;6:102. doi: https://doi.org/10.1186/s40425-018-0391-1 DOI: https://doi.org/10.1186/s40425-018-0391-1
Goff SL, Dudley ME, Citrin DE, et al. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J Clin Oncol. 2016;34(20):2389-97. doi: https://doi.org/10.1200/jco.2016.66.7220 DOI: https://doi.org/10.1200/JCO.2016.66.7220
Radvanyi LG, Bernatchez C, Zhang M, et al. Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin Cancer Res. 2012;18(24):6758-70. doi: https://doi.org/10.1158/1078-0432.CCR-12-1177 DOI: https://doi.org/10.1158/1078-0432.CCR-12-1177
Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550-7. doi: https://doi.org/10.1158/1078-0432.ccr-11-0116 DOI: https://doi.org/10.1158/1078-0432.CCR-11-0116
Dafni U, Michielin O, Lluesma SM, et al. Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: a systematic review and meta-analysis. Ann Oncol. 2019;30(12):1902-13. doi: https://doi.org/10.1093/annonc/mdz398 DOI: https://doi.org/10.1093/annonc/mdz398
Caravagna G, Barbuti R, d’Onofrio A. Fine-tuning anti-tumor immunotherapies via stochastic simulations. BMC Bioinformatics. 2012;13(Suppl 4):S8. doi: https://doi.org/10.1186/1471-2105-13-S4-S8 DOI: https://doi.org/10.1186/1471-2105-13-S4-S8
Kronik N, Kogan Y, Schlegel PG, et al. Improving T-cell immunotherapy for melanoma through a mathematically motivated strategy: efficacy in numbers? Efficacy in numbers? J Immunother. 2012;35(2):116-24. doi: https://doi.org/10.1097/CJI.0b013e318236054c DOI: https://doi.org/10.1097/CJI.0b013e318236054c
Caravagna G, d’Onofrio A, Milazzo P, et al. Tumour suppression by immune system through stochastic oscillations. J Theor Biol. 2010;265(3):336-45. doi: https://doi.org/10.1016/j.jtbi.2010.05.013 DOI: https://doi.org/10.1016/j.jtbi.2010.05.013
De Boer RJ, Hogeweg P, Dullens HF, et al. Macrophage T lymphocyte interactions in the anti-tumor immune response: a mathematical model. J Immunol. 1985;134(4):2748-58. doi: https://doi.org/10.4049/jimmunol.134.4.2748 DOI: https://doi.org/10.4049/jimmunol.134.4.2748
Kuznetsov VA, Makalkin IA, Taylor MA, et al. Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull Math Biol. 1994;56:295-321. doi: https://doi.org/10.1007/bf02460644 DOI: https://doi.org/10.1016/S0092-8240(05)80260-5
Besser MJ, Shapira-Frommer R, Treves AJ, et al. Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin Cancer Res. 2010;16(9):2646-55. doi: https://doi.org/10.1158/1078-0432.CCR-10-0041 DOI: https://doi.org/10.1158/1078-0432.CCR-10-0041
Rosenberg SA, Restifo NP, Yang JC, et al. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8:299-308. doi: https://doi.org/10.1038/nrc2355 DOI: https://doi.org/10.1038/nrc2355
Rawlings JB, Ekerdt JG. GNU Octave [Internet]. Versão 8.1.0. Madison, Austin: John W. Eaton; 2024. [acesso 2023 set 13]. Disponível em: https://octave.org/download
Conselho Nacional de Saúde (BR). Resolução n° 510, de 7 de abril de 2016. Dispõe sobre as normas aplicáveis a pesquisas em Ciências Humanas e Sociais cujos procedimentos metodológicos envolvam a utilização de dados diretamente obtidos com os participantes ou de informações identificáveis ou que possam acarretar riscos maiores do que os existentes na vida cotidiana, na forma definida nesta Resolução [Internet]. Diário Oficial da União, Brasília, DF. 2016 maio 24 [acesso 2023 set 14]; Seção I:44. Disponível em: http://bvsms.saude.gov.br/bvs/saudelegis/cns/2016/res0510_07_04_2016.html
Alvarado CSM. Estudo e implementação de métodos de validação de modelos matemáticos aplicados no desenvolvimento de sistemas de controle de processos industriais [tese]. São Paulo: Universidade de São Paulo; 2017. doi: https://doi.org/10.11606/T.3.2017.tde-05092017-092437 DOI: https://doi.org/10.11606/T.3.2017.tde-05092017-092437
Andersen R, Donia M, Ellebaek E, et al. Long-lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumor-infiltrating lymphocytes and an attenuated IL2 regimen. Clin Cancer Res. 2016;22(15):3734-45. doi: https://doi.org/10.1158/1078-0432.ccr-15-1879 DOI: https://doi.org/10.1158/1078-0432.CCR-15-1879
Saltelli A, Bammer G, Bruno I, et al. Five ways to ensure that models serve society: a manifesto. Nature. 2020;582(7813):482-4. doi: https://doi.org/10.1038/d41586-020-01812-9 DOI: https://doi.org/10.1038/d41586-020-01812-9
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565-70. doi: https://doi.org/10.1126/science.1203486 DOI: https://doi.org/10.1126/science.1203486
Tran E, Turcotte S, Gros A, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 2014;344(6184):641-5. doi: https://doi.org/10.1126/science.1251102 DOI: https://doi.org/10.1126/science.1251102
Gattinoni L, Klebanoff CA, Restifo NP. Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer. 2012;12(10):671-84. doi: https://doi.org/10.1038/nrc3322 DOI: https://doi.org/10.1038/nrc3322
Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol. 2014;192(12):5451-8. doi: https://doi.org/10.4049/jimmunol.1490019 DOI: https://doi.org/10.4049/jimmunol.1490019
Abbas AK, Lichtman AH. Imunologia básica. Funções e distúrbios do sistema imunológico. 3. ed. Rio de Janeiro: Elsevier Editora Ltda; 2009.
Marabondo S, Kaufman HL. High-dose interleukin-2 (IL-2) for the treatment of melanoma: safety considerations and future directions. Expert Opin Drug Saf. 2017;16:1347-57. doi: https://doi.org/10.1080/14740338.2017.1382472 DOI: https://doi.org/10.1080/14740338.2017.1382472
Conlon KC, Lugli E, Welles HC, et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J Clin Oncol. 2015;33:74-82. doi: https://doi.org/10.1200/JCO.2014.57.3329 DOI: https://doi.org/10.1200/JCO.2014.57.3329
Publicado
Cómo citar
Número
Sección
Licencia
Os direitos morais e intelectuais dos artigos pertencem aos respectivos autores, que concedem à RBC o direito de publicação.
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.