Genomic Surveillance of SARS-CoV-2 Variants at a Reference Cancer Hospital in Rio de Janeiro, Brazil

Authors

  • Élida Mendes de Oliveira Instituto Nacional de Câncer (INCA), Programa de Genética e Virologia Tumoral. Rio de Janeiro (RJ), Brasil. https://orcid.org/0009-0005-1086-9652
  • Caroline Carvalho de Sá Instituto Nacional de Câncer (INCA), Programa de Genética e Virologia Tumoral. Rio de Janeiro (RJ), Brasil. https://orcid.org/0009-0007-9337-7956
  • Julia Botto de Barros Cordeiro Instituto Nacional de Câncer (INCA), Programa de Genética e Virologia Tumoral. Rio de Janeiro (RJ), Brasil. https://orcid.org/0009-0005-2199-6534
  • Luiz Claudio Santos Thuler Instituto Nacional de Câncer (INCA), Programa de Epidemiologia Clínica. Rio de Janeiro (RJ), Brasil. https://orcid.org/0000-0003-2550-6537
  • Maria Eduarda Lanzillota Assumpção Instituto Nacional de Câncer (INCA), Programa de Genética e Virologia Tumoral. Rio de Janeiro (RJ), Brasil. https://orcid.org/0009-0008-4315-3601
  • Gabriela Seara de Andrade Instituto Nacional de Câncer (INCA), Programa de Genética e Virologia Tumoral. Rio de Janeiro (RJ), Brasil.
  • Vinicius Figueiredo Vizzoni Instituto de Pesquisas Biomédicas, Laboratório de Biologia Molecular, Hospital Naval Marcílio Dias. Rio de Janeiro (RJ), Brasil. https://orcid.org/0000-0002-7595-1607
  • João Paulo de Biaso Viola Instituto Nacional de Câncer (INCA), Programa de Imunologia e Biologia Tumoral. Rio de Janeiro (RJ), Brasil. Rio de Janeiro, Brazil https://orcid.org/0000-0002-0698-3146
  • Marcelo Alves Soares Instituto Nacional de Câncer (INCA), Programa de Genética e Virologia Tumoral. Rio de Janeiro (RJ), Brasil. https://orcid.org/0000-0002-9013-2570
  • Juliana Domett Siqueira Instituto Nacional de Câncer (INCA), Programa de Genética e Virologia Tumoral. Rio de Janeiro (RJ), Brasil. https://orcid.org/0000-0002-4266-9795
  • Livia Ramos Goes Instituto Nacional de Câncer (INCA), Programa de Genética e Virologia Tumoral. Rio de Janeiro (RJ), Brasil. https://orcid.org/0000-0002-4909-4912

DOI:

https://doi.org/10.32635/2176-9745.RBC.2024v70n3.4637

Keywords:

SARS-CoV-2, COVID-19, Neoplasias/genética, Epidemiological Monitoring, Genoma Viral

Abstract

Introduction: The fast SARS-CoV-2 spread and high mutation rates during viral replication led to virus diversification and the emergence of new variants. Genomic surveillance has been key to monitoring SARS-CoV-2 variants across the globe. Immune suppression, as observed in cancer patients, is a risk factor for SARS-CoV-2 infection and severe COVID-19. Objective: To report a two-year genomic surveillance of SARS-CoV-2 in cancer patients followed up at the Brazilian National Cancer Institute, Rio de Janeiro, Brazil. Method: Prospective observational study with 384 SARS-CoV-2+ swabs specimens collected and evaluated between October 2020 and September 2022. SARS-CoV-2 spike was analyzed by PCR and Sanger sequencing to determine the infecting variant. Results: Most of the patients had solid organ malignancies (298/384; 77.6%) and 16.1% (62/384) had metastatic disease. Severe COVID-19 cases accounted for 29.4% (113/384) and 27.1% (104/384) of deaths registered. The most common SARS-CoV-2 infecting variants were Gamma (n=137) and Omicron (BA.1) (n=73). The variant distribution overtime was similar to what has been reported for the general population of Brazil in the same period. When patients’ cancer topographies were analyzed, it was found that Gamma infected patients with breast (47/137; 34.3%) and cervical (11/137; 8%) cancer were more frequent than other variants, while Omicron predominated among rectum (10/122; 8.2%) and prostate (8/122; 6.6%) cancer compared to other variants. Conclusion: Genomic surveillance is an important tool for identifying and evaluating the impact of SARS-CoV-2 variants, and should continue especially in immunosuppressed populations.

Downloads

Download data is not yet available.

References

World Health Organization [Internet]. Geneva: 2020. Coronavirus disease (COVID-19) pandemic Overview.[accessed 2024 Mar 19]. Available at: https://www.who.int/europe/emergencies/situations/covid-19

Scovino AM, Dahab EC, Vieira GF, et al. SARS-CoV-2’s variants of concern: a brief characterization. Front Immunol. 2022;13:834098. doi: https://doi.org/10.3389/fimmu.2022.834098 DOI: https://doi.org/10.3389/fimmu.2022.834098

Centers for Disease Control and Prevention. SARS-CoV-2 Variant classifications and definitions. [Internet]. [Atlanta]: CDC; 2023. [update 2023 Sep 1; accessed 2024 Mar 19] Available at: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html

Pinheiro JR, Reis EC, Farias JP, et al. Impact of early pandemic SARS-CoV-2 lineages replacement with the variant of concern P.1 (Gamma) in Western Bahia, Brazil. Viruses. 2022;14(10):2314. doi: https://doi. org/10.3390/v14102314 DOI: https://doi.org/10.3390/v14102314

World Health Organization [Internet]. Geneva: WHO; 2021. COVID-19: Surveillance, case investigation and epidemiological protocols - Guidance for surveillance of SARS-CoV-2 variants: Interim guidance, 9 August 2021,

ago 9. [update 2023 Sep 1; accessed 2024 Mar 19] Available at: https://www.who.int/publications/i/item/WHO_2019-nCoV_surveillance_variants

Ren SY, Wang WB, Gao RD, et al. Omicron variant (B.1.1.529) of SARS-CoV-2: Mutation, infectivity, transmission, and vaccine resistance. World J Clin Cases. 2022;10(1):1-11. doi: https://doi.org/10.12998/wjcc.v10.i1.1 DOI: https://doi.org/10.12998/wjcc.v10.i1.1

Chakraborty C, Bhattacharya M, Sharma AR, et al. A comprehensive analysis of the mutational landscape of the newly emerging Omicron (B.1.1.529) variant and comparison of mutations with VOCs and VOIs. Geroscience. 2022;44(5):2393-425. doi: https://doi.org/10.1007/s11357-022-00631-2 DOI: https://doi.org/10.1007/s11357-022-00631-2

Mlcochova P, Kemp SA, Dhar MS, et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature. 2021;599(7883):114-9. doi: https://doi.org/10.1038/s41586-021-03944-y DOI: https://doi.org/10.1038/s41586-021-03944-y

Lee ARYB, Wong SY, Chai LYA, et al. Efficacy of covid-19 vaccines in immunocompromised patients: systematic review and meta-analysis. BMJ. 2022;376:e068632. doi: https://doi.org/10.1136/bmj-2021-068632 DOI: https://doi.org/10.1136/bmj-2021-068632

Siqueira JD, Goes LR, Alves BM, et al. SARS-CoV-2 genomic analyses in cancer patients reveal elevated intrahost genetic diversity. Virus Evol. 2021;7(1):veab013. doi: https://doi.org/10.1093/ve/veab013 DOI: https://doi.org/10.1093/ve/veab013

Goes LR, Siqueira JD, Garrido MM, et al. Evidence of recurrent selection of mutations commonly found in SARS-CoV-2 variants of concern in viruses infecting immunocompromised patients. Front Microbiol. 2022;13:946549. doi: https://doi.org/10.3389/fmicb.2022.946549 DOI: https://doi.org/10.3389/fmicb.2022.946549

Artic Network [Internet]. SARS-CoV-2 Amplicon Set Version 3. [place unknown]: Artic Network; 2019.[update 2023 Sep 1; accessed 2024 Mar 19]. Available at: https://artic.network/ncov-2019

Goes LR, Siqueira JD, Garrido MM, et al. New infections by SARS-CoV-2 variants of concern after natural infections and post-vaccination in Rio de Janeiro, Brazil. Infect Genet Evol. 2021;94:104998. doi: https://doi. org/10.1016/j.meegid.2021.104998 DOI: https://doi.org/10.1016/j.meegid.2021.104998

Nguyen LT, Schmidt HA, von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268-74. doi: https://doi.org/10.1093/molbev/msu300 DOI: https://doi.org/10.1093/molbev/msu300

Kalyaanamoorthy S, Minh BQ, Wong TKF, et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587-9. doi: https://doi.org/10.1038/nmeth.4285 DOI: https://doi.org/10.1038/nmeth.4285

Conselho Nacional de Saúde (BR). Resolução n° 466, de 12 de dezembro de 2012. Aprova as diretrizes e normas regulamentadoras de pesquisas envolvendo seres humanos. Diário Oficial da União, Brasília, DF. 2013 jun 13; Seção I:59.

Dashboard Genomic Network [Internet]. Rio de Janeiro: Fiocruz; 2024. SARS-CoV-2 Genomic Surveillance in Brazil, 2024 jul 9. [update 2023 Sep 1; accessed 2024 Mar 19] Available at: https://www.genomahcov.fiocruz. br/dashboard-en/

Markarian NM, Galli G, Patel D, et al. Identifying markers of emerging SARS-CoV-2 variants in patients with secondary immunodeficiency. Front Microbiol. 2022;13:933983. doi: https://doi.org/10.3389/fmicb.2022.933983 DOI: https://doi.org/10.3389/fmicb.2022.933983

Costa GJ, Azevedo CRAS, Júnior JIC, et al. Higher severity and risk of in-hospital mortality for COVID-19 patients with cancer during the year 2020 in Brazil: A countrywide analysis of secondary data. Cancer. 2021;127(22):4240-8. doi: https://doi.org/10.1002/cncr.33832 DOI: https://doi.org/10.1002/cncr.33832

Silva JL, Souza BSW, Albuquerque LZ, et al. Factors influencing COVID-19 mortality among cancer patients: a brazilian multi-institutional study. PLoS One. 2023;18(12):e0295597. doi: https://doi.org/10.1371/journal.pone.0295597 DOI: https://doi.org/10.1371/journal.pone.0295597

Downloads

Published

2024-07-19

How to Cite

1.
Oliveira Élida M de, Sá CC de, Cordeiro JB de B, Thuler LCS, Assumpção MEL, Andrade GS de, Vizzoni VF, Viola JP de B, Soares MA, Siqueira JD, Goes LR. Genomic Surveillance of SARS-CoV-2 Variants at a Reference Cancer Hospital in Rio de Janeiro, Brazil. Rev. Bras. Cancerol. [Internet]. 2024 Jul. 19 [cited 2024 Jul. 22];70(3):e-094637. Available from: https://rbc.inca.gov.br/index.php/revista/article/view/4637

Issue

Section

ORIGINAL ARTICLE