El Papel de los Polimorfismos de Núcleotido Único en los Genes ERCC1, BACH1 y NR5A2 en la Susceptibilidad al Cáncer de Páncreas y la Epidemiología Global: Revisión Sistemática de la Literatura
DOI:
https://doi.org/10.32635/2176-9745.RBC.2026v72n1.5363Palabras clave:
Neoplasias Pancreáticas/etiología, Epidemiología/estadística & datos numéricos, Incidencia, Mortalidad/tendencias, Variación GenéticaResumen
Introducción: El cáncer de páncreas es una de las neoplasias malignas más agresivas, ocupando el duodécimo lugar entre los cánceres más comunes, y la sexta causa principal de muertes relacionadas con el cáncer a nivel mundial. Su etiología es multifactorial, involucrando factores genéticos y no genéticos. Objetivo: Investigar la relación entre los datos epidemiológicos sobre la incidencia y mortalidad global del cáncer de páncreas y variaciones genéticas específicas conocidas como polimorfismos de un solo nucleótido (SNP). Método: Se analizaron 253 SNP, identificados a través de estudios de asociación del genoma completo (GWAS). Las frecuencias alélicas se obtuvieron de bases de datos de poblaciones globales. Utilizando el análisis de correlación de Pearson, se evaluaron las relaciones entre las frecuencias de los SNP, la incidencia y las tasas de mortalidad. Resultados: Los resultados identificaron 16 SNP significativos (p<0,05), entre los cuales rs2816938, rs372883 y rs2236575 fueron altamente significativos (p<0,001). Estas variantes se asociaron principalmente con tasas de mortalidad más elevadas, particularmente en poblaciones europeas y americanas, mientras que las poblaciones africanas y del Sudeste Asiático mostraron frecuencias de SNP más bajas y tasas de mortalidad más reducidas. Los hallazgos sugieren que la predisposición genética desempeña un papel crucial en la susceptibilidad y progresión del cáncer de páncreas. Conclusión: La correlación entre las frecuencias de SNP y los datos epidemiológicos refuerza la influencia de los factores de riesgo genéticos específicos de cada población, destacando la importancia de enfoques personalizados en las estrategias de detección, prevención y tratamiento.
Descargas
Citas
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-63. doi: https://doi.org/10.3322/caac.21834 DOI: https://doi.org/10.3322/caac.21834
SEER: Surveillance, Epidemiology, and End Results [Internet]. Bethesda: National Cancer Institute; 2024. [cited 2024 Oct 26]. Available from: https://seer.cancer.gov/statfacts/html/pancreas.html
Yang Y, Shi J, Huang J, et al. Case-control trials on risk factors for pancreatic cancer: a systematic review and meta-analysis. Iran J Public Health. 2023;52(8):1578-88. doi: https://doi.org/10.18502/ijph.v52i8.13397 DOI: https://doi.org/10.18502/ijph.v52i8.13397
Abdellaoui A, Dolan CV, Verweij KJH, et al. Gene-environment correlations across geographic regions affect genome-wide association studies. Nat Genet. 2022;54(9):1345-54. doi: https://doi.org/10.1038/s41588-022-01158-0 DOI: https://doi.org/10.1038/s41588-022-01158-0
Ye ZM, Li LJ, Luo MB, et al. A systematic review and network meta-analysis of single nucleotide polymorphisms associated with pancreatic cancer risk. Aging (Albany NY). 2020;12(24):25256-74. doi: https://doi.org/10.18632/aging.104128 DOI: https://doi.org/10.18632/aging.104128
Aoki MN, Stein A, Carvalho J, et al. Susceptibility loci for pancreatic cancer in the Brazilian population. BMC Med Genomics. 2021;14(1):111. doi: https://doi.org/10.1186/s12920-021-00956-5 DOI: https://doi.org/10.1186/s12920-021-00956-5
Campa D, Gentiluomo M, Stein A, et al. The PANcreatic Disease ReseArch (PANDoRA) consortium: ten years’ experience of association studies to understand the genetic architecture of pancreatic cancer. Crit Rev Oncol Hematol. 2023;186:104020. doi: https://doi.org/10.1016/j.critrevonc.2023.104020 DOI: https://doi.org/10.1016/j.critrevonc.2023.104020
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: https://doi.org/10.1136/bmj.n71 DOI: https://doi.org/10.1136/bmj.n71
University of York. Centre for Reviews and Dissemination [Internet]. New York: University of York; 2019. PROSPERO - International prospective register of systematic reviews. 2023. [cited 2025 ago 31]. Available from: https://www.crd.york.ac.uk/PROSPERO/view/CRD420251067640
Wells GA, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses [Internet]. Ottawa: Ottawa Hospital Research Institute; 2009 [cited 2024 Oct 25]. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
Little J, Higgins JP, Ioannidis JP, et al. STrengthening the REporting of Genetic Association Studies (STREGA): an extension of the STROBE statement. PLoS Med. 2009;6(2):e22. doi: https://doi.org/10.1371/journal.pmed.1000022 DOI: https://doi.org/10.1371/journal.pmed.1000022
GCO: Global Cancer Observatory [Internet]. Lyon: IARC; c1965-2022. [2024 Oct 2025]. Available from: https://gco.iarc.fr/
IGSR: The International Genome Sample Resource [Internet]. Cambridge: EMBL-EBI; ©2008-2025. [cited 2024 Oct 4]. Available from: https://www.internationalgenome.org/
Henley SS, Golden RM, Kashner TM. Statistical modeling methods: challenges and strategies. Biostat Epidemiol. 2020;4(1):105-39. doi: https://doi.org/10.1080/24709360.2019.1618653 DOI: https://doi.org/10.1080/24709360.2019.1618653
Cor.test: test of association/correlation [Internet]. Vienna: R Foundation for Statistical Computing; 2025. [cited 2024 Oct 4]. Available from: https://stat.ethz.ch/R-manual/R-devel/library/stats/html/cor.test.html
Bland JM. Multiple significance tests: the Bonferroni method. BMJ. 1995;310(6973):170. doi: https://doi.org/10.1136/bmj.310.6973.170 DOI: https://doi.org/10.1136/bmj.310.6973.170
Wickham H. ggplot2: create elegant data visualisations using the grammar of graphics [Internet]. 3.5.1 ed. Houston: Posit Software, PBC; 2025 [cited 2024 Oct 4]. Available from: https://ggplot2.tidyverse.org
Zhao L, Liu H, Luo S, et al. Associations between genetic variants of KIF5B, FMN1, and MGAT3 in the cadherin pathway and pancreatic cancer risk. Cancer Med. 2020;9(24):9620-31. doi: https://doi.org/10.1002/cam4.3603 DOI: https://doi.org/10.1002/cam4.3603
Campa D, Matarazzi M, Greenhalf W, et al. Genetic determinants of telomere length and risk of pancreatic cancer: a PANDoRA study. Inter J. Cancer. 2019;144(6):1275-83. doi: https://doi.org/10.1002/ijc.31928 DOI: https://doi.org/10.1002/ijc.31928
Mohelnikova-Duchonova B, Krajsova I, Holubec L, et al. SLC22A3 polymorphisms do not modify pancreatic cancer risk, but may influence overall patient survival. Sci Rep. 2017;7(1):9426. doi: https://doi.org/10.1038/s41598-017-10049-y DOI: https://doi.org/10.1038/srep43812
Wu Chen, Kraft P, Stolzenberg-Solomon R, et al. Genome-wide association study of survival in patients with pancreatic adenocarcinoma. Gut. 2014;63(1):152-60. doi: https://doi.org/10.1136/gutjnl-2012-303477 DOI: https://doi.org/10.1136/gutjnl-2012-303477
Couch FJ, Wang X, McWilliams RR, et al. Association of breast cancer susceptibility variants with risk of pancreatic cancer. Cancer Epidemiol Biomarkers Prev. 2009;18(11):3044-8. doi: https://doi.org/10.1158/1055-9965.EPI-09-0306 DOI: https://doi.org/10.1158/1055-9965.EPI-09-0306
Han Y, Jung KJ, Kim U, et al. Non-invasive biomarkers for early diagnosis of pancreatic cancer risk: metabolite genomewide association study based on the KCPS-II cohort. J Transl Med. 2023;21(1):878. doi: https://doi.org/10.1186/s12967-023-04670-x DOI: https://doi.org/10.1186/s12967-023-04670-x
Huang X, Zheng J, Li J, et al. Functional role of BTB and CNC homology 1 gene in pancreatic cancer and its association with survival in patients treated with gemcitabine. Theranostics. 2018;8(12):3366-79. doi: https://doi.org/10.7150/thno.23978 DOI: https://doi.org/10.7150/thno.23978
Zhang M, Wang Z, Obazee O, et al. Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21. Oncotarget. 2016;7(41):66328-43. doi: https://doi.org/10.18632/oncotarget.11041 DOI: https://doi.org/10.18632/oncotarget.11041
Fong PY, Lee SH, Chan WC, et al. Association of diabetes susceptibility gene Calpain-10 with pancreatic cancer among smokers. J Gastrointest Cancer. 2010;41(3):203-8. doi: https://doi.org/10.1007/s12029-010-9130-7 DOI: https://doi.org/10.1007/s12029-010-9130-7
Wu C, Miao X, Huang L, et al. Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations. Nat Genet. 2011;44(1):62-6. doi: https://doi.org/10.1038/ng.1020 DOI: https://doi.org/10.1038/ng.1020
Pistoni L, Gentiluomo M, Lu Y, et al. Associations between pancreatic expression quantitative traits and risk of pancreatic ductal adenocarcinoma. Carcinogenesis. 2021;42(8):1037-45. doi: https://doi.org/10.1093/carcin/bgab057 DOI: https://doi.org/10.1093/carcin/bgab057
Shan YS, Hsu HP, Lai MD, et al. Validation of genome-wide association study-identified single nucleotide polymorphisms in a case-control study of pancreatic cancer from Taiwan. J Biomed Sci. 2011;18:64. doi: https://doi.org/10.1186/1423-0127-18-64 DOI: https://doi.org/10.1186/1423-0127-18-64
Tian J, Chen C, Rao M, et al. Aberrant RNA splicing is a primary link between genetic variation and pancreatic cancer risk. Cancer Res. 2022;82(11):2084-96. doi: https://doi.org/10.1158/0008-5472.can-21-4367 DOI: https://doi.org/10.1158/0008-5472.CAN-21-4367
He MG, Zheng K, Tan D, et al. Association between ERCC1 and ERCC2 gene polymorphisms and susceptibility to pancreatic cancer. Genet Mol Res. 2016;15(1). doi: https://doi.org/10.4238/gmr.15017879 DOI: https://doi.org/10.4238/gmr.15017879
McWilliams RR, Bamlet WR, Andrade M, et al. Nucleotide excision repair pathway polymorphisms and pancreatic cancer risk: evidence for role of MMS19L. Cancer Epidemiol Biomarkers Prev. 2009;18(4):1295-302. doi: https://doi.org/10.1158/1055-9965.epi-08-1109 DOI: https://doi.org/10.1158/1055-9965.EPI-08-1109
Dai P, Li J, Li W, et al. Genetic polymorphisms and pancreatic cancer risk: a PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore). 2019;98(32):e16541. doi: https://doi.org/10.1097/md.0000000000016541 DOI: https://doi.org/10.1097/MD.0000000000016541
Nunes K, Pereira R, Santos C, et al. Admixture’s impact on Brazilian population evolution and health. Science. 2025;388:eadl3564. doi: https://doi.org/10.1126/science.adl3564 DOI: https://doi.org/10.1126/science.adl3564
Ueno M, Hosono S, Nakata B, et al. Genome-wide association study-identified SNPs (rs3790844, rs3790843) in the NR5A2 gene and risk of pancreatic cancer in Japanese. Sci Rep. 2015;5:17018. doi: https://doi.org/10.1038/srep17018 DOI: https://doi.org/10.1038/srep17018
López de Maturana E, Rodríguez JA, Alonso L, et al. A multilayered post-GWAS assessment on genetic susceptibility to pancreatic cancer. Genome Med. 2021;13(1):15. doi: https://doi.org/10.1186/s13073-020-00816-4 DOI: https://doi.org/10.1186/s13073-020-00816-4
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Os direitos morais e intelectuais dos artigos pertencem aos respectivos autores, que concedem à RBC o direito de publicação.

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.