O Papel dos Polimorfismos de Nucleotídeo Único nos Genes ERCC1, BACH1 e NR5A2 na Suscetibilidade ao Câncer de Pâncreas e na Epidemiologia Global: Revisão Sistemática da Literatura
DOI:
https://doi.org/10.32635/2176-9745.RBC.2026v72n1.5363Palavras-chave:
Neoplasias Pancreáticas/etiologia, Epidemiologia/estatística & dados numéricos, Incidência, Mortalidade/tendências, Variação GenéticaResumo
Introdução: O câncer de pâncreas é uma das neoplasias malignas mais agressivas, ocupando a décima segunda posição entre os tipos de câncer mais comuns, e a sexta principal causa de mortes relacionadas ao câncer em todo o mundo. Sua etiologia é multifatorial, envolvendo fatores genéticos e não genéticos. Objetivo: Investigar a relação entre dados epidemiológicos sobre a incidência e mortalidade global do câncer de pâncreas e variações genéticas específicas conhecidas como polimorfismos de nucleotídeo único (SNP). Método: Analisaram-se 253 SNP, identificados por meio de estudos de associação genômica ampla (GWAS). As frequências alélicas foram obtidas em bancos de dados populacionais globais. Utilizando análise de correlação de Pearson, avaliaram-se as relações entre as frequências dos SNP, a incidência e as taxas de mortalidade. Resultados: Os resultados identificaram 16 SNP significativos (p<0,05), entre os quais rs2816938, rs372883 e rs2236575 se destacaram com alta significância (p<0,001). Essas variantes estiveram principalmente associadas a maiores taxas de mortalidade, especialmente em populações europeias e americanas, enquanto populações africanas e do Sudeste Asiático apresentaram frequências mais baixas dos SNP e menores taxas de mortalidade. Os achados sugerem que a predisposição genética desempenha um papel crucial na suscetibilidade e progressão do câncer de pâncreas. Conclusão: A correlação entre as frequências dos SNP e os dados epidemiológicos reforça a influência de fatores genéticos específicos de cada população, ressaltando a importância de abordagens personalizadas nas estratégias de rastreamento, prevenção e tratamento.
Downloads
Referências
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-63. doi: https://doi.org/10.3322/caac.21834 DOI: https://doi.org/10.3322/caac.21834
SEER: Surveillance, Epidemiology, and End Results [Internet]. Bethesda: National Cancer Institute; 2024. [cited 2024 Oct 26]. Available from: https://seer.cancer.gov/statfacts/html/pancreas.html
Yang Y, Shi J, Huang J, et al. Case-control trials on risk factors for pancreatic cancer: a systematic review and meta-analysis. Iran J Public Health. 2023;52(8):1578-88. doi: https://doi.org/10.18502/ijph.v52i8.13397 DOI: https://doi.org/10.18502/ijph.v52i8.13397
Abdellaoui A, Dolan CV, Verweij KJH, et al. Gene-environment correlations across geographic regions affect genome-wide association studies. Nat Genet. 2022;54(9):1345-54. doi: https://doi.org/10.1038/s41588-022-01158-0 DOI: https://doi.org/10.1038/s41588-022-01158-0
Ye ZM, Li LJ, Luo MB, et al. A systematic review and network meta-analysis of single nucleotide polymorphisms associated with pancreatic cancer risk. Aging (Albany NY). 2020;12(24):25256-74. doi: https://doi.org/10.18632/aging.104128 DOI: https://doi.org/10.18632/aging.104128
Aoki MN, Stein A, Carvalho J, et al. Susceptibility loci for pancreatic cancer in the Brazilian population. BMC Med Genomics. 2021;14(1):111. doi: https://doi.org/10.1186/s12920-021-00956-5 DOI: https://doi.org/10.1186/s12920-021-00956-5
Campa D, Gentiluomo M, Stein A, et al. The PANcreatic Disease ReseArch (PANDoRA) consortium: ten years’ experience of association studies to understand the genetic architecture of pancreatic cancer. Crit Rev Oncol Hematol. 2023;186:104020. doi: https://doi.org/10.1016/j.critrevonc.2023.104020 DOI: https://doi.org/10.1016/j.critrevonc.2023.104020
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: https://doi.org/10.1136/bmj.n71 DOI: https://doi.org/10.1136/bmj.n71
University of York. Centre for Reviews and Dissemination [Internet]. New York: University of York; 2019. PROSPERO - International prospective register of systematic reviews. 2023. [cited 2025 ago 31]. Available from: https://www.crd.york.ac.uk/PROSPERO/view/CRD420251067640
Wells GA, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses [Internet]. Ottawa: Ottawa Hospital Research Institute; 2009 [cited 2024 Oct 25]. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
Little J, Higgins JP, Ioannidis JP, et al. STrengthening the REporting of Genetic Association Studies (STREGA): an extension of the STROBE statement. PLoS Med. 2009;6(2):e22. doi: https://doi.org/10.1371/journal.pmed.1000022 DOI: https://doi.org/10.1371/journal.pmed.1000022
GCO: Global Cancer Observatory [Internet]. Lyon: IARC; c1965-2022. [2024 Oct 2025]. Available from: https://gco.iarc.fr/
IGSR: The International Genome Sample Resource [Internet]. Cambridge: EMBL-EBI; ©2008-2025. [cited 2024 Oct 4]. Available from: https://www.internationalgenome.org/
Henley SS, Golden RM, Kashner TM. Statistical modeling methods: challenges and strategies. Biostat Epidemiol. 2020;4(1):105-39. doi: https://doi.org/10.1080/24709360.2019.1618653 DOI: https://doi.org/10.1080/24709360.2019.1618653
Cor.test: test of association/correlation [Internet]. Vienna: R Foundation for Statistical Computing; 2025. [cited 2024 Oct 4]. Available from: https://stat.ethz.ch/R-manual/R-devel/library/stats/html/cor.test.html
Bland JM. Multiple significance tests: the Bonferroni method. BMJ. 1995;310(6973):170. doi: https://doi.org/10.1136/bmj.310.6973.170 DOI: https://doi.org/10.1136/bmj.310.6973.170
Wickham H. ggplot2: create elegant data visualisations using the grammar of graphics [Internet]. 3.5.1 ed. Houston: Posit Software, PBC; 2025 [cited 2024 Oct 4]. Available from: https://ggplot2.tidyverse.org
Zhao L, Liu H, Luo S, et al. Associations between genetic variants of KIF5B, FMN1, and MGAT3 in the cadherin pathway and pancreatic cancer risk. Cancer Med. 2020;9(24):9620-31. doi: https://doi.org/10.1002/cam4.3603 DOI: https://doi.org/10.1002/cam4.3603
Campa D, Matarazzi M, Greenhalf W, et al. Genetic determinants of telomere length and risk of pancreatic cancer: a PANDoRA study. Inter J. Cancer. 2019;144(6):1275-83. doi: https://doi.org/10.1002/ijc.31928 DOI: https://doi.org/10.1002/ijc.31928
Mohelnikova-Duchonova B, Krajsova I, Holubec L, et al. SLC22A3 polymorphisms do not modify pancreatic cancer risk, but may influence overall patient survival. Sci Rep. 2017;7(1):9426. doi: https://doi.org/10.1038/s41598-017-10049-y DOI: https://doi.org/10.1038/srep43812
Wu Chen, Kraft P, Stolzenberg-Solomon R, et al. Genome-wide association study of survival in patients with pancreatic adenocarcinoma. Gut. 2014;63(1):152-60. doi: https://doi.org/10.1136/gutjnl-2012-303477 DOI: https://doi.org/10.1136/gutjnl-2012-303477
Couch FJ, Wang X, McWilliams RR, et al. Association of breast cancer susceptibility variants with risk of pancreatic cancer. Cancer Epidemiol Biomarkers Prev. 2009;18(11):3044-8. doi: https://doi.org/10.1158/1055-9965.EPI-09-0306 DOI: https://doi.org/10.1158/1055-9965.EPI-09-0306
Han Y, Jung KJ, Kim U, et al. Non-invasive biomarkers for early diagnosis of pancreatic cancer risk: metabolite genomewide association study based on the KCPS-II cohort. J Transl Med. 2023;21(1):878. doi: https://doi.org/10.1186/s12967-023-04670-x DOI: https://doi.org/10.1186/s12967-023-04670-x
Huang X, Zheng J, Li J, et al. Functional role of BTB and CNC homology 1 gene in pancreatic cancer and its association with survival in patients treated with gemcitabine. Theranostics. 2018;8(12):3366-79. doi: https://doi.org/10.7150/thno.23978 DOI: https://doi.org/10.7150/thno.23978
Zhang M, Wang Z, Obazee O, et al. Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21. Oncotarget. 2016;7(41):66328-43. doi: https://doi.org/10.18632/oncotarget.11041 DOI: https://doi.org/10.18632/oncotarget.11041
Fong PY, Lee SH, Chan WC, et al. Association of diabetes susceptibility gene Calpain-10 with pancreatic cancer among smokers. J Gastrointest Cancer. 2010;41(3):203-8. doi: https://doi.org/10.1007/s12029-010-9130-7 DOI: https://doi.org/10.1007/s12029-010-9130-7
Wu C, Miao X, Huang L, et al. Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations. Nat Genet. 2011;44(1):62-6. doi: https://doi.org/10.1038/ng.1020 DOI: https://doi.org/10.1038/ng.1020
Pistoni L, Gentiluomo M, Lu Y, et al. Associations between pancreatic expression quantitative traits and risk of pancreatic ductal adenocarcinoma. Carcinogenesis. 2021;42(8):1037-45. doi: https://doi.org/10.1093/carcin/bgab057 DOI: https://doi.org/10.1093/carcin/bgab057
Shan YS, Hsu HP, Lai MD, et al. Validation of genome-wide association study-identified single nucleotide polymorphisms in a case-control study of pancreatic cancer from Taiwan. J Biomed Sci. 2011;18:64. doi: https://doi.org/10.1186/1423-0127-18-64 DOI: https://doi.org/10.1186/1423-0127-18-64
Tian J, Chen C, Rao M, et al. Aberrant RNA splicing is a primary link between genetic variation and pancreatic cancer risk. Cancer Res. 2022;82(11):2084-96. doi: https://doi.org/10.1158/0008-5472.can-21-4367 DOI: https://doi.org/10.1158/0008-5472.CAN-21-4367
He MG, Zheng K, Tan D, et al. Association between ERCC1 and ERCC2 gene polymorphisms and susceptibility to pancreatic cancer. Genet Mol Res. 2016;15(1). doi: https://doi.org/10.4238/gmr.15017879 DOI: https://doi.org/10.4238/gmr.15017879
McWilliams RR, Bamlet WR, Andrade M, et al. Nucleotide excision repair pathway polymorphisms and pancreatic cancer risk: evidence for role of MMS19L. Cancer Epidemiol Biomarkers Prev. 2009;18(4):1295-302. doi: https://doi.org/10.1158/1055-9965.epi-08-1109 DOI: https://doi.org/10.1158/1055-9965.EPI-08-1109
Dai P, Li J, Li W, et al. Genetic polymorphisms and pancreatic cancer risk: a PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore). 2019;98(32):e16541. doi: https://doi.org/10.1097/md.0000000000016541 DOI: https://doi.org/10.1097/MD.0000000000016541
Nunes K, Pereira R, Santos C, et al. Admixture’s impact on Brazilian population evolution and health. Science. 2025;388:eadl3564. doi: https://doi.org/10.1126/science.adl3564 DOI: https://doi.org/10.1126/science.adl3564
Ueno M, Hosono S, Nakata B, et al. Genome-wide association study-identified SNPs (rs3790844, rs3790843) in the NR5A2 gene and risk of pancreatic cancer in Japanese. Sci Rep. 2015;5:17018. doi: https://doi.org/10.1038/srep17018 DOI: https://doi.org/10.1038/srep17018
López de Maturana E, Rodríguez JA, Alonso L, et al. A multilayered post-GWAS assessment on genetic susceptibility to pancreatic cancer. Genome Med. 2021;13(1):15. doi: https://doi.org/10.1186/s13073-020-00816-4 DOI: https://doi.org/10.1186/s13073-020-00816-4
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Os direitos morais e intelectuais dos artigos pertencem aos respectivos autores, que concedem à RBC o direito de publicação.

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.