Paclitaxel Modula a Proliferação e a Diferenciação de Células THP-1 Expostas ao Vírus SARS-CoV-2 Inativado
DOI:
https://doi.org/10.32635/2176-9745.RBC.2025v71n2.5107Palavras-chave:
Neoplasias da Mama/tratamento farmacológico , Paclitaxel, COVID-19, Síndrome da Liberação de Citocina, Citotoxicidade Imunológica/efeitos dos fármacosResumo
Introdução: Pacientes oncológicos foram considerados grupo de risco para a covid-19. Estudos indicam que determinados tipos de câncer, como o de mama, podem apresentar respostas imunológicas diferenciadas. Evidências sugerem que o paclitaxel (PTX), quimioterápico amplamente utilizado no tratamento do câncer de mama, tem propriedade imunomoduladora, o que poderia contribuir para atenuar a resposta inflamatória causada pelo vírus SARS-CoV-2. Objetivo: Avaliar o efeito do PTX na linhagem de células imunes THP-1 ativadas pelo imunógeno não viral éster de forbol 12-O-tetradecanoilforbol13-acetato (TPA) e pelo vírus SARS-CoV-2 inativado oriundo da vacina CoronaVac (CVac). Método: Foi conduzido um estudo in vitro constituído, primeiramente, pela determinação da concentração mínima de CVac capaz de ativar as células THP-1. A seguir, foi investigada a ação citotóxica do PTX nas células THP-1, seguida da análise do seu efeito imunomodulador por meio da análise da taxa de proliferação celular, diferenciação citomorfológica, níveis de óxido nítrico, ânion superóxido e expressão gênica das citocinas fator de necrose tumoral alfa e interleucina 10. Resultados: Em 24 horas, a CVac 5% ativou as células THP-1, desencadeando proliferação e diferenciação celular mais significativas que o controle. Nenhum efeito citotóxico de PTX foi observado. O PTX diminuiu a taxa de diferenciação celular e os níveis de superóxido quando exposto concomitantemente com TPA ou CVac, mas não modulou a expressão gênica das citocinas. Conclusão: Os dados indicam que o PTX poderia modular a ativação imunológica in vitro frente a imunógenos virais e não virais, sugerindo que ele poderia atenuar a resposta inflamatória a antígenos, incluindo o SARS-CoV-2.
Downloads
Referências
Chai C, Feng X, Lu M, et al. One-year mortality and consequences of COVID‐19 in cancer patients: a cohort study. IUBMB Life. 2021;73(10):1244-56. doi: https://doi.org/10.1002/iub.2536 DOI: https://doi.org/10.1002/iub.2536
Alagoz O, Lowry KP, Kurian AW, et al. Impact of the COVID-19 pandemic on breast cancer mortality in the US: estimates from collaborative simulation modeling. JNCI J Natl Cancer Inst. 2021;113(11):1484-94. doi: https://doi.org/10.1093/jnci/djab097 DOI: https://doi.org/10.1093/jnci/djab097
Pinato DJ, Tabernero J, Bower M, et al. Prevalence and impact of COVID-19 sequelae on treatment and survival of patients with cancer who recovered from SARS-CoV-2 infection: evidence from the OnCovid retrospective, multicentre registry study. Lancet Oncol. 2021;22(12):1669-80. doi: https://doi.org/10.1016/S1470-2045(21)00573-8 DOI: https://doi.org/10.1016/S1470-2045(21)00573-8
Hertz E, Cruz IBM, Gonçalves CFA, et al. Does breast cancer have a lower risk of mortality from severe acute respiratory syndrome compared to other types of cancer? Evidence from Brazil, a heterogeneous population. Contrib LAS Cienc Soc. 2023;16(12):32178-97. doi: https://doi.org/10.55905/revconv.16n.12-186 DOI: https://doi.org/10.55905/revconv.16n.12-186
Abu Samaan TM, Samec M, Liskova A, et al. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules. 2019;9(12):789. doi: https://doi.org/10.3390/biom9120789 DOI: https://doi.org/10.3390/biom9120789
Adhami M, Sadeghi B, Rezapour A, et al. Repurposing novel therapeutic candidate drugs for coronavirus disease-19 based on protein-protein interaction network analysis. BMC Biotechnol. 2021;21(1):22. doi: https://doi.org/10.1186/s12896-021-00680-z DOI: https://doi.org/10.1186/s12896-021-00680-z
Dan VM, Raveendran RS, Baby S. Resistance to intervention: paclitaxel in breast cancer. Mini-Rev Med Chem. 2021;21(10):1237-68. doi: https://doi.org/10.2174/1389557520999201214234421 DOI: https://doi.org/10.2174/1389557520999201214234421
Debien V, Marta GN, Agostinetto E, et al. Real-world clinical outcomes of patients with stage I HER2-positive breast cancer treated with adjuvant paclitaxel and trastuzumab. Crit Rev Oncol Hematol. 2023;190:104089. doi: https://doi.org/10.1016/j.critrevonc.2023.104089 DOI: https://doi.org/10.1016/j.critrevonc.2023.104089
Zhu L, Chen L. Progress in research on paclitaxel and tumor immunotherapy. Cell Mol Biol Lett. 2019;24(1):40. doi: https://doi.org/10.1186/s11658-019-0164-y DOI: https://doi.org/10.1186/s11658-019-0164-y
Zanza C, Romenskaya T, Manetti AC, et al. Cytokine storm in COVID-19: Immunopathogenesis and therapy. Medicina (Mex). 2022;58(2):144. doi: https://doi.org/10.3390/medicina58020144 DOI: https://doi.org/10.3390/medicina58020144
Mohd Yasin ZN, Mohd Idrus FN, Hoe CH, et al. Macrophage polarization in THP-1 cell line and primary monocytes: a systematic review. Differentiation. 2022;128:67-82. doi: https://doi.org/10.1016/j.diff.2022.10.001
Dallavalasa S, Beeraka NM, Basavaraju CG, et al. The role of tumor associated macrophages (TAMs) in cancer progression, chemoresistance, angiogenesis and metastasis - Current status. Curr Med Chem. 2021;28(39):8203-36. doi: https://doi.org/10.2174/0929867328666210720143721 DOI: https://doi.org/10.2174/1875533XMTE20ODIe4
Jin L, Li Z, Zhang X, et al. CoronaVac: a review of efficacy, safety, and immunogenicity of the inactivated vaccine against SARS-CoV-2. Hum Vaccines Immunother. 2022;18(6):2096970. doi: https://doi.org/10.1080/21645515.2022.2096970 DOI: https://doi.org/10.1080/21645515.2022.2096970
Lund ME, To J, O’Brien BA, et al. The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. J Immunol Methods. 2016;430:64-70. doi: https://doi.org/10.1016/j.jim.2016.01.012 DOI: https://doi.org/10.1016/j.jim.2016.01.012
Geraghty RJ, Capes-Davis A, Davis JM, et al. Guidelines for the use of cell lines in biomedical research. Br J Cancer. 2014;111(6):1021-46. doi: https://doi.org/10.1038/bjc.2014.166 DOI: https://doi.org/10.1038/bjc.2014.166
Conselho Nacional de Saúde (BR). Resolução n° 466, de 12 de dezembro de 2012. Aprova as diretrizes e normas regulamentadoras de pesquisas envolvendo seres humanos. Diário Oficial da União, Brasília, DF. 2013 jun 13; Seção I:59.
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. doi: https://doi.org/10.1016/0022-1759(83)90303-4 DOI: https://doi.org/10.1016/0022-1759(83)90303-4
Barbisan F, Motta JDR, Trott A, et al. Methotrexate-related response on human peripheral blood mononuclear cells may be modulated by the Ala16Val-SOD2 gene polymorphism. PLoS ONE. 2014;9(10):e107299. doi: https://doi.org/10.1371/journal.pone.0107299 DOI: https://doi.org/10.1371/journal.pone.0107299
Organização para Cooperação e Desenvolvimento Econômico. Guidance document on good in vitro method practices. Paris: OECD; 2018. (OECD Series on testing and assessment)
Ates G, Vanhaecke T, Rogiers V, et al. Assaying cellular viability using the neutral red uptake assay. Methods Mol Biol. 2017;1601:19-26. doi: https://doi.org/10.1007/978-1-4939-6960-9_2 DOI: https://doi.org/10.1007/978-1-4939-6960-9_2
Repetto G, Del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc. 2008;3(7):1125-31. doi: https://doi.org/10.1038/nprot.2008.75 DOI: https://doi.org/10.1038/nprot.2008.75
Baxter EW, Graham AE, Re NA, et al. Standardized protocols for differentiation of THP-1 cells to macrophages with distinct M(IFNγ+LPS), M(IL-4) and M(IL-10) phenotypes. J Immunol Methods. 2020;478:112721. doi: https://doi.org/10.1016/j.jim.2019.112721 DOI: https://doi.org/10.1016/j.jim.2019.112721
Rasband WS. ImageJ software [Internet]. version 1.41. Bethesda: U.S. National Institutes of Health; 2009. [Acesso 2025 jan 25]. Disponivel em: https://imagej.net/ij/index.html
Weigert A, Von Knethen A, Fuhrmann D, et al. Redox-signals and macrophage biology. Mol Aspects Med. 2018;63:70-87. doi: https://doi.org/10.1016/j.mam.2018.01.003 DOI: https://doi.org/10.1016/j.mam.2018.01.003
Chang YY, Lu CW, Jean WH, et al. Phorbol myristate acetate induces differentiation of THP-1 cells in a nitric oxide-dependent manner. Nitric Oxide. 2021;109-110:33-41. doi: https://doi.org/10.1016/j.niox.2021.02.002 DOI: https://doi.org/10.1016/j.niox.2021.02.002
Tatsch E, Bochi GV, Pereira RDS, et al. A simple and inexpensive automated technique for measurement of serum nitrite/nitrate. Clin Biochem. 2011;44(4):348-50. doi: https://doi.org/10.1016/j.clinbiochem.2010.12.011 DOI: https://doi.org/10.1016/j.clinbiochem.2010.12.011
Morabito C, Rovetta F, Bizzarri M, et al. Modulation of redox status and calcium handling by extremely low frequency electromagnetic fields in C2C12 muscle cells: a real-time, single-cell approach. Free Radic Biol Med. 2010;48(4):579-89. https://doi.org/10.1016/j.freeradbiomed.2009.12.005 DOI: https://doi.org/10.1016/j.freeradbiomed.2009.12.005
Son SS, Kang JS, Lee EY. Paclitaxel ameliorates palmitate-induced injury in mouse podocytes. Med Sci Monit Basic Res. 2020;26. doi: https://doi.org/10.12659/MSMBR.928265 DOI: https://doi.org/10.12659/MSMBR.928265
Graph Pad: Prism [Internet]. Versão 9.4. Boston: GraphPad; 2020. [acesso 2024 dez 19]. Disponível em: https://www.graphpad.com/updates/prism-900-release-notes
Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol. 2014;23(1):37-45. doi: https://doi.org/10.1016/j.intimp.2014.08.002 DOI: https://doi.org/10.1016/j.intimp.2014.08.002
Barhoumi T, Alghanem B, Shaibah H, et al. SARS-CoV-2 coronavirus spike protein-induced apoptosis, inflammatory, and oxidative stress responses in THP-1-like-macrophages: potential role of angiotensin-converting enzyme inhibitor (perindopril). Front Immunol. 2021;12:728896. doi: https://doi.org/10.3389/fimmu.2021.728896 DOI: https://doi.org/10.3389/fimmu.2021.728896
Albrahim T, Alnasser MM, Al-Anazi MR, et al. In vitro studies on the immunomodulatory effects of pulicaria crispa extract on human THP-1 monocytes. Oxid Med Cell Longev. 2020;2020:7574606. doi: https://doi.org/10.1155/2020/7574606 DOI: https://doi.org/10.1155/2020/7574606
Yasin ZNM, Idrus FNM, Hoe CH, et al. Macrophage polarization in THP-1 cell line and primary monocytes: a systematic review. Differentiation. 2022;128:67-82. doi: https://doi.org/10.1016/j.diff.2022.10.001 DOI: https://doi.org/10.1016/j.diff.2022.10.001
Pan P, Shen M, Yu Z, et al. SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. Nat Commun. 2021;12(1):4664. doi: https://doi.org/10.1038/s41467-021-25015-6 DOI: https://doi.org/10.1038/s41467-021-25015-6
Khatua S, Simal-Gandara J, Acharya K. Understanding immune-modulatory efficacy in vitro. Chem Biol Interact. 2022;352:109776. doi: https://doi.org/10.1016/j.cbi.2021.109776 DOI: https://doi.org/10.1016/j.cbi.2021.109776
Huang H, Li X, Zha D, et al. SARS-CoV-2 e protein-induced THP-1 pyroptosis is reversed by Ruscogenin. Biochem Cell Biol. 2023;101(4):303-12. doi: https://doi.org/10.1139/bcb-2022-0359 DOI: https://doi.org/10.1139/bcb-2022-0359
Liu T, Huang T, Li J, et al. Optimization of differentiation and transcriptomic profile of THP-1 cells into macrophage by PMA. PLoS One. 2023;18(7):e0286056. doi: https://doi.org/10.1371/journal.pone.0286056 DOI: https://doi.org/10.1371/journal.pone.0286056
Asnaashari S, Amjad E, Sokouti B. Synergistic effects of flavonoids and paclitaxel in cancer treatment: a systematic review. Cancer Cell Int. 2023;23(1):211. doi: https://doi.org/10.1186/s12935-023-03052-z DOI: https://doi.org/10.1186/s12935-023-03052-z
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425-40. doi: https://doi.org/10.1002/jcp.26429 DOI: https://doi.org/10.1002/jcp.26429
Wanderley CW, Colón DF, Luiz JPM, et al. Paclitaxel reduces tumor growth by reprogramming tumor-associated macrophages to an M1 profile in a TLR4-dependent manner. Cancer Res. 2018;78(20):5891-900. doi: https://doi.org/10.1158/0008-5472.CAN-17-3480 DOI: https://doi.org/10.1158/0008-5472.CAN-17-3480
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Os direitos morais e intelectuais dos artigos pertencem aos respectivos autores, que concedem à RBC o direito de publicação.

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.