New Strategies in CAR T-Cell Immunotherapy for Patients with Acute Lymphoblastic Leukemia: Investigating the Rise of the Therapeutic Approach

Authors

  • Guilherme dos Santos Elias Universidade Federal do Espírito Santo (Ufes), Programa de Pós-graduação em Bioquímica, Centro de Ciências da Saúde. Vitória (ES), Brasil. https://orcid.org/0009-0008-1235-8188

DOI:

https://doi.org/10.32635/2176-9745.RBC.2025v71n3.5017

Keywords:

Receptors, Chimeric Antigen, Immunotherapy, Immunologic Techniques, Precursor Cell Lymphoblastic Leukemia-Lymphoma, Genetic Engineering

Abstract

Introduction: Acute lymphoblastic leukemia (ALL) is a hematologic malignancy characterized by uncontrolled proliferation of mutated B- and/or T-cell lymphoblasts, which severely compromises the human body and exhibits high mortality rates. This condition subjects patients to an exhaustive clinical journey, further aggravated by the adverse effects of conventional therapies. In this context, genetically modified T-cells expressing chimeric antigen receptors (CAR) demonstrate significant efficacy in overcoming the challenges of this aggressive disease. Objective: To analyze the clinical implications identified in key studies investigating CAR T-cell therapy for ALL treatment. Method: Integrative literature review involving the collection of scientific articles from databases including PubMed, SciELO, Periódicos, Scopus, Web of Science, and J-STAGE, from 2000 onward. Our approach focused on investigating, analyzing, and highlighting the impacts of CAR T-cell therapy on patients with ALL. Results: The data demonstrate that, despite challenges posed by adverse effects and tumor resistance, CAR T-cell therapy is a critical therapeutic approach against ALL, showing high rates of remission and overall survival in clinical trials. However, significant limitations persist, including high costs, challenges in ensuring quality control, and elevated recurrence rates, which hinder definitive validation of its efficacy and safety. Conclusion: Further research is imperative to optimize CAR T-cell design and identify more precise biomarkers.

Downloads

Download data is not yet available.

References

Sheykhhasan M, Manoochehri H, Dama P. Use of CAR T-cell for acute lymphoblastic leukemia (ALL) treatment: a review study. Cancer Gene Ther. 2022;(29):1080-96. doi: https://doi.org/10.1038/s41417-021-00418-1 DOI: https://doi.org/10.1038/s41417-021-00418-1

Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 2017;7:e577. doi: https://doi.org/10.1038/bcj.2017.53 DOI: https://doi.org/10.1038/bcj.2017.53

Aureli A, Marziani B, Venditti A, et al. Acute lymphoblastic leukemia immunotherapy treatment: now, next, and beyond. Cancers. 2023;15(13):3346. doi: https://doi.org/10.3390/cancers15133346 DOI: https://doi.org/10.3390/cancers15133346

Chen Z, Xin Q, Wei W, et al. The pathogenesis and development of targeted drugs in acute T lymphoblastic leukaemia. Br J Pharmacol. 2023;180(8):1017-37. doi: https://doi.org/10.1111/bph.16029 DOI: https://doi.org/10.1111/bph.16029

Huang F-L, Liao E-C, Li C-L, et al. Pathogenesis of pediatric B‑cell acute lymphoblastic leukemia: molecular pathways and disease treatments (review). Oncol Lett. 2020;20(1):448-54. doi: https://doi.org/10.3892/ol.2020.11583 DOI: https://doi.org/10.3892/ol.2020.11583

Zuckerman T, Rowe JM. Pathogenesis and prognostication in acute lymphoblastic leukemia. F1000Prime Rep. 2014;6:59. doi: https://doi.org/10.12703/p6-59 DOI: https://doi.org/10.12703/P6-59

Yoon J-H, Lee S. Diagnostic and therapeutic advances in adults with acute lymphoblastic leukemia in the era of gene analysis and targeted immunotherapy. Korean J Intern Med. 2024;39(1):34-56. doi: https://doi.org/10.3904/kjim.2023.407 DOI: https://doi.org/10.3904/kjim.2023.407

Kansal R. Diagnosis and molecular pathology of lymphoblastic leukemias and lymphomas in the era of genomics and precision medicine: historical evolution and current concepts-part 2: B-/TCell acute lymphoblastic leukemias. Lymphatics. 2023;1(2):118-54. doi: https://doi.org/10.3390/lymphatics1020011 DOI: https://doi.org/10.3390/lymphatics1020011

Liu Y, Easton J, Shao Y, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49:1211-8. doi: https://doi.org/10.1038/ng.3909 DOI: https://doi.org/10.1038/ng.3909

Liu S, Deng B, Yin Z, et al. Combination of CD19 and CD22 CAR-T cell therapy in relapsed B-cell acute lymphoblastic leukemia after allogeneic transplantation. Am J Hematol. 2021;96:671-9. doi: https://doi.org/10.1002/ajh.26160 DOI: https://doi.org/10.1002/ajh.26160

AlMoshary M, Altahan SM, Alswayyed AF. Early response and outcomes of bone marrow to chemotherapy in T-cell acute lymphoblastic leukemia. Pak J Med Sci. 2024;40(5):979-84. doi: https://doi.org/10.12669/pjms.40.5.7584 DOI: https://doi.org/10.12669/pjms.40.5.7584

Dourthe ME, Baruchel A. CAR T-cells for T-cell acute lymphoblastic leukemia. EJC Paediatr Oncol. 2024;3:100150. doi: https://doi.org/10.1016/j.ejcped.2024.100150 DOI: https://doi.org/10.1016/j.ejcped.2024.100150

Campos-Sanchez E, Toboso-Navasa A, Romero-Camarero I, et al. Acute lymphoblastic leukemia anddevelopmental biology: a crucial interrelationship. Cell Cycle. 2011;10(20):3473-86. doi: https://doi.org/10.4161/cc.10.20.11979 DOI: https://doi.org/10.4161/cc.10.20.17779

Coccaro N, Anelli L, Zagaria A, et al. Next-generation sequencing in acute lymphoblastic leukemia. Int J Mol Sci. 2019;20(12):2929. doi: https://doi.org/10.3390/ijms20122929 DOI: https://doi.org/10.3390/ijms20122929

Comeaux EQ, Mullighan CG. TP53 Mutations in hypodiploid acute lymphoblastic leukemia. Cold Spring Harb Perspect Med. 2017;7(3):a026286. doi: https://doi.org/10.1101/cshperspect.a026286 DOI: https://doi.org/10.1101/cshperspect.a026286

Jing J, Ma Y, Xie Z, et al. Acute T-cell lymphoblastic leukemia: chimeric antigen receptor technology may offer a new hope. Front Immunol. 2024;15:1410519. doi: https://doi.org/10.3389/fimmu.2024.1410519 DOI: https://doi.org/10.3389/fimmu.2024.1410519

Patel J, Gao X, Wang H. An update on clinical trials and potential therapeutic strategies in T-cell acute lymphoblastic leukemia. Int J Mol Sci. 2023;24(8):7201. doi: https://doi.org/10.3390/ijms24087201 DOI: https://doi.org/10.3390/ijms24087201

Tomasik J, Jasiński M, Basak GW. Next generations of CAR-T cells - new therapeutic opportunities in hematology? Front Immunol. 2022;13:1034707. doi: https://doi.org/10.3389/fimmu.2022.1034707 DOI: https://doi.org/10.3389/fimmu.2022.1034707

Pan J Cordo V, van der Zwet JCG, Canté-Barrett K, et al. T-cell acute lymphoblastic leukemia: a roadmap to targeted therapies. Blood Cancer Discov. 2020;2(1):19-31. doi: https://doi.org/10.1158/2643-3230.BCD-20-0093 DOI: https://doi.org/10.1158/2643-3230.BCD-20-0093

Tan Y, Shan L, Zhao L, et al. Long-term follow-up of donorderived CD7 CAR T-cell therapy in patients with T-cell acute lymphoblastic leukemia. J Hematol Oncol. 2023;16(34):1-15. doi: https://doi.org/10.1186/s13045-023-01427-3 DOI: https://doi.org/10.1186/s13045-023-01427-3

Araújo LGL, Rodrigues VP, Silva MML, et al. Perfil demográfico e clínico de casos de neoplasias hematológicas em crianças e adolescentes. Rev Bras Cancerol. 2022;68(2):e-242356. doi: https://doi.org/10.32635/2176-9745.RBC.2022v68n2.2356 DOI: https://doi.org/10.32635/2176-9745.RBC.2022v68n2.2356

Agência Nacional de Vigilância Sanitária [Internet]. Brasília, DF: Anvisa; 2022. Anvisa aprova 3º produto de terapia avançada para tratamento do câncer, 2022 out 26. [acesso 2025 maio 15]. Disponível em: https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2022/anvisa-aprova-3o-produto-de-terapia-avancada-paratratamento-do-cancer

Agência Nacional de Vigilância Sanitária [Internet]. Brasília, DF: Anvisa; 2022. Anvisa aprova mais um produto de terapia avançada para tratamento de câncer no Brasil, 2023 dez 29. [acesso 2025 maio 15]. Disponível em: https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2023/anvisa-aprova-maisum-produto-de-terapia-avancada-para-tratamento-docancer-no-brasil

Agência Nacional de Vigilância Sanitária [Internet]. Brasília, DF: Anvisa; 2022. Anvisa aprova produto de terapia avançada para tratamento de câncer, 2022 fev 23. [acesso 2025 maio 15]. Disponível em: https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2022/anvisa-aprova-produto-de-terapia-avancada-paratratamento-de-cancer

Agência Nacional de Vigilância Sanitária [Internet]. Brasília, DF: Anvisa; 2022. Anvisa aprova registro de produto de terapia avançada para câncer, 2022 abr 1. [acesso 2025 maio 15]. Disponível em: https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2022/anvisa-aprova-registro-de-produto-de-terapia-avancadapara-cancer

Agência Nacional de Vigilância Sanitária [Internet]. Brasília, DF: Anvisa; 2022. Autorizada pesquisa nacional com células CAR-T para tratar câncer, 2022 jul 13. [acesso 2025 maio 15]. Disponível em: https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2022/autorizada-pesquisa-nacional-com-celulas-car-t-paratratar-cancer-1

Bhattarai N. Assessing immunogenicity of products for gene therapy and t cell therapy [Internet]. [Sem local]: FDA; 2017. [acesso 2025 maio 15]. Disponível em: https://www.fda.gov/vaccines-blood-biologics/biologics-research-projects/assessing-immunogenicityproducts-gene-therapy-and-t-cell-therapy

Food and Drug Administration [Internet]. Silver Spring: FDA; 2017. FDA approval brings first gene therapy to the United States. [acesso 2025 maio 15]. Disponível em: https://www.fda.gov/news-events/press-announcements/fda-approval-brings-first-genetherapy-united-states

Food and Drug Administration [Internet]. Silver Spring: FDA; 2017. FDA approves tisagenlecleucel for B-cell ALL and tocilizumab for cytokine release syndrome. [acesso 2025 maio 15]. Disponível em: https://www.fda.gov/drugs/resources-information-approved-drugs/fdaapproves-tisagenlecleucel-B-cell-all-and-tocilizumabcytokine-release-syndrome

Ministério da Saúde (BR). Ministério da Saúde. Portaria Conjunta nº 21, de 10 de dezembro de 2021. Aprova as Diretrizes Diagnósticas e Terapêuticas – Mesilato de Imatinibe no Tratamento da Leucemia Linfoblástica Aguda Cromossoma Philadelphia Positivo do Adulto. Diário Oficial da União, Brasília, DF. 10 dez 2021; Edição 234;Seção 1:111.

Pan K, Farrukh H, Chittepu VCSR, et al. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J Exp Clin Cancer Res. 2022;41:119. doi: https://doi.org/10.1186/s13046-022-02327-z DOI: https://doi.org/10.1186/s13046-022-02327-z

American Cancer Society [Internet]. Atlanta: ACS; ©2025. Acute lymphocytic leukemia (ALL) subtypes and prognostic factor, 2018 out 17. [Acesso 2025 maio 15]. Disponível em: https://www.cancer.org/cancer/types/acute-lymphocytic-leukemia/detection-diagnosisstaging/how-classified.html

National Cancer Institute [Internet]. Bethesda: National Cancer Institute; 2024. Acute Lymphoblastic Leukemia Treatment (PDQ)–Patient Version. [Acesso 2025 maio 15]. Disponível em: https://www.cancer.gov/types/leukemia/patient/adult-all-treatment-pdq

Chen Y-J, Abila B, Mostafa Kamel Y. CAR-T: what is next? Cancers. 2023;15(3):663. doi: https://doi.org/10.3390/cancers15030663 DOI: https://doi.org/10.3390/cancers15030663

Alnefaie A, Albogami S, Asiri Y, et al. Chimeric antigen receptor T-cells: an overview of concepts, applications, limitations, and proposed solutions. Front. Bioeng. Biotechnol. 2022;10:797440. doi: https://doi.org/10.3389/fbioe.2022.797440 DOI: https://doi.org/10.3389/fbioe.2022.797440

Ren A, Tong X, Xu N, et al. CAR T-cell immunotherapy treating T-ALL: challenges and opportunities. Vaccines. 2023;11(1):165. doi: https://doi.org/10.3390/vaccines11010165 DOI: https://doi.org/10.3390/vaccines11010165

Mohanty R, Chowdhury CR, Arega S, et al. CAR T cell therapy: a new era for cancer treatment (Review). Oncology Reports. 2019;42(6):2183-95. doi: https://doi.org/10.3892/or.2019.7335 DOI: https://doi.org/10.3892/or.2019.7335

Boyiadzis MM, Dhodapkar MV, Brentjens RJ, et al. Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: clinical perspective and significance. J Immunother Cancer. 2018;6(1):137. doi: https://doi.org/10.1186/s40425-018-0460-5 DOI: https://doi.org/10.1186/s40425-018-0460-5

Li YR, Lyu Z, Chen Y, et al. Frontiers in CAR-T cell therapy for autoimmune diseases. Trends Pharmacol Sci. 2024;45(9):839-57. doi: https://doi.org/10.1016/j.tips.2024.07.005 DOI: https://doi.org/10.1016/j.tips.2024.07.005

National Cancer Institute [Internet]. Washington: NCI; [sem data]. CAR T cells: engineering patients´ immune cells to treat their cancers, 2025 fev 26. [acesso 2025 mar 10]. Disponível em: https://www.cancer.gov/aboutcancer/treatment/research/car-t-cells

Weber F, Carrijo MF, Pereira Érica R, et al. Tratamento da leucemia linfóide aguda em crianças: uma revisão narrativa. Braz J Develop. 2023;9(4):13353-69. doi: https://doi.org/10.34117/bjdv9n4-054 DOI: https://doi.org/10.34117/bjdv9n4-054

Park CH. Making potent CAR T Cells using genetic engineering and synergistic agents. Cancers. 2021;13(13):3236. doi: https://doi.org/10.3390/cancers13133236 DOI: https://doi.org/10.3390/cancers13133236

Wei J, Han X, Bo J, et al. Target selection for CAR-T therapy. J Hematol Oncol. 2019;12(62):1-9. doi: https://doi.org/10.1186/s13045-019-0758-x DOI: https://doi.org/10.1186/s13045-019-0758-x

Iriguchi S, Kaneko S. Toward the development of true “off-the-shelf ” synthetic T-cell immunotherapy. Cancer Science. 2019;110(1):16-22. doi: https://doi.org/10.1111/cas.13892 DOI: https://doi.org/10.1111/cas.13892

Liu J, Jiang P, Lu Z, et al. Decoding leukemia at the single-cell level: clonal architecture, classification, microenvironment, and drug resistance. Exp Hematol. 2024;13(1):12. doi: https://doi.org/10.1186/s40164-024-00479-6 DOI: https://doi.org/10.1186/s40164-024-00479-6

M.D. Anderson Cancer Center Maryland: NIH; ©2025. Umbilical & cord blood (CB) derived CARengineered NK cells for B lymphoid malignancies. ClinicalTrials.gov [Internet]. 2024 [acesso 2025 mar 25]. Disponível em: https://clinicaltrials.gov/study/NCT03056339

Magnani CF, Gaipa G, Lussana F, et al. Sleeping beauty-engineered CAR T cells achieve antileukemic activity without severe toxicities. J Clin Invest. 2020;130(11):6021-33. doi: https://doi.org/10.1172/JCI138473 DOI: https://doi.org/10.1172/JCI138473

Newman H, Teachey DT. A bright horizon: immunotherapy for pediatric T-Cell malignancies. Int J Mol Sci. 2022;23(15):8600. doi: https://doi.org/10.3390/ijms23158600 DOI: https://doi.org/10.3390/ijms23158600

Sánchez-Martínez D, Baroni ML, Gutierrez-Agüera F, et al. Fratricide-resistant CD1a-specific CAR T cells for the treatment of cortical T-cell acute lymphoblastic leukemia. Blood. 2019;133(21):2291-304. doi: https://doi.org/10.1182/blood-2018-10-882944 DOI: https://doi.org/10.1182/blood-2018-10-882944

Pan J, Tan Y, Deng B, et al. Previous-transplant or new-match donor CD5 CAR T cells in pediatric and adult relapsed/refractory T-ALL: first-in-human, phase 1 study [Internet]. In: 29º Congress of the European Hematology Association (EHA); 2024 Jun 13-16; Madrid: EHA Library; 2024.

Sasine J. Feasibility and safety of collecting and combining autologous hematopoietic stem cells with chimeric antigen receptor (CAR) T-cell therapy in subjects with relapsed/refractory hematological malignancies [Internet]. ClinicalTrials.gov. 2025 [acesso 2024 abr. 2]. Disponível em: https://clinicaltrials.gov/study/NCT05887167

Xu X, Sun Q, Liang X, et al. Mechanisms of relapse after CD19 CAR T-cell therapy for acute lymphoblastic leukemia and its prevention and treatment strategies. Front Immunol. 2019;10:2664. doi: https://doi.org/10.3389/fimmu.2019.02664 DOI: https://doi.org/10.3389/fimmu.2019.02664

Zhang P, Meng J, Li Y, et al. Nanotechnology-enhanced immunotherapy for metastatic cancer. Innovation (Camb Mass). 2021;2(4):100174. doi: https://doi.org/10.1016/j.xinn.2021.100174 DOI: https://doi.org/10.1016/j.xinn.2021.100174

Zhang Y, Chen H, Song Y, et al. CAR T-cell therapy as a bridge to hematopoietic stem cell transplantation for refractory/relapsed B-cell acute lymphoblastic leukemia. Br J Haematol. 2020;189(1):146-52. doi: https://doi.org/10.1111/bjh.16339 DOI: https://doi.org/10.1111/bjh.16339

Zhang Y, Li C, Du M, et al. Allogenic and autologous anti-CD7 CAR-T cell therapies in relapsed or refractory T-cell malignancies. Blood Cancer J. 2023;13(1):61. doi: https://doi.org/10.1038/s41408-023-00822-w DOI: https://doi.org/10.1038/s41408-023-00822-w

Zheng R, Zhu X, Xiao Y. Advances in CAR-T-cell therapy in T-cell malignancies. J Hematol Oncol. 2024;17(1):49. doi: https://doi.org/10.1186/s13045- 024-01568-z DOI: https://doi.org/10.1186/s13045-024-01568-z

Iriguchi S, Yasui Y, Kawai Y, et al. A clinically applicable and scalable method to regenerate T-cells from iPSCs for off-the-shelf T-cell immunotherapy. Nat Commun. 2021;12(430):1-15. doi: https://doi.org/10.1038/s41467-020-20658-3 DOI: https://doi.org/10.1038/s41467-020-20658-3

Moradi S, Mahdizadeh H, Šarić T, et al. Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Res Ther; 2019;10(1):341. doi: https://doi.org/10.1186/s13287-019-1455-y DOI: https://doi.org/10.1186/s13287-019-1455-y

Ceppi F, Wilson AL, Annesley C, et al. Modified manufacturing process modulates CD19CAR T-cell engraftment fitness and leukemia-free survival in pediatric and young adult subjects. Cancer Immunol Res. 2022;10(7):856-70. doi: https://doi.org/10.1158/2326-6066.CIR-21-0501 DOI: https://doi.org/10.1158/2326-6066.CIR-21-0501

Whittemore R, Knafl K. The integrative review: updated methodology. J Adv Nurs. 2005;52(5):546-53. doi: https://doi.org/10.1111/j.1365-2648.2005.03621.x DOI: https://doi.org/10.1111/j.1365-2648.2005.03621.x

Oermann MH, Knafl KA. Strategies for completing a successful integrative review. Nurse Author Ed. 2021;31(3-4):65-68. doi: https://doi.org/10.1111/nae2.30 DOI: https://doi.org/10.1111/nae2.30

Slim K, Nini E, Forestier D, et al. Methodological index for non-randomized studies (MINORS): development and validation of a new instrument. ANZ J Surg. 2003;73(9):712-6. https://doi.org/10.1046/j.1445-2197.2003.02748.x DOI: https://doi.org/10.1046/j.1445-2197.2003.02748.x

Ma LL, Wang YY, Yang ZH, et al. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: what are they and which is better? Mil Med Res. 2020;7(7):1-11. doi: https://doi.org/10.1186/s40779-020-00238-8 DOI: https://doi.org/10.1186/s40779-020-00238-8

Celgene. A study to evaluate the safety and efficacy of JCAR017 in pediatric subjects with relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL) and B-cell non-Hodgkin lymphoma (B-NHL). ClinicalTrials.gov [Internet]. 2024 [acesso 2025 mar 15]. Disponivel em: https://clinicaltrials.gov/ct2/show/NCT03743246

Kite A Gilead Company. A study evaluating the safety and efficacy of brexucabtagene autoleucel (KTE-X19) in adult subjects with relapsed/refractory B-precursor acute lymphoblastic leukemia (ZUMA-3). ClinicalTrials.gov [Internet]. [acesso 2025 mar 18]. Disponivel em: https://clinicaltrials.gov/ct2/show/NCT02614066

Chiesa R, Georgiadis C, Syed F, et al. Base-edited CAR7 T Cells for relapsed T-cell acute lymphoblastic leukemia. N Engl J Med. 2023;389(10):899-910. doi: https://doi.org/10.1056/nejmoa2300709 DOI: https://doi.org/10.1056/NEJMoa2300709

St. Jude Children’s Research Hospital. CAR T-cell therapy directed to CD70 for pediatric patients with hematological malignancies. ClinicalTrials.gov [Internet]. 2025 [acesso 2025 jun 19]. Disponível em: https://clinicaltrials.gov/study/NCT06326463

The Affiliated Hospital of Xuzhou Medical University. Clinical study of anti-CD1a CAR-T in the treatment of R/R acute T-lymphoblastic leukemia/lymphoblastic lymphoma. ClinicalTrials.gov [Internet]. 2023 [acesso 2023 fev 27]. Disponível em: https://clinicaltrials.gov/study/NCT05745181

Essen Biotech. Sequential CAR-T cells therapy for CD5/CD7 positive T-cell acute lymphoblastic leukemia and lymphoblastic lymphoma using CD5/CD7-specific CAR-T cells (BAH246). ClinicalTrials.gov [Internet]. 2024 [acesso 2025 mar 1]. Disponivel em: https://clinicaltrials.gov/study/NCT06420076

M. D. Anderson Cancer Center. Phase I/II study of CD5 CAR engineered IL15-transduced cord bloodderived NK cells in conjunction with lymphodepleting chemotherapy for the management of relapsed/ refractory hematological malignances. ClinicalTrials.gov [Internet]. 2025 [acesso 2025 jun 1]. Disponível em: https://clinicaltrials.gov/study/NCT05110742 72. The Affiliated People’s Hospital of Ningbo University. Study of CAR-T cell therapy in the treatment of relapsed/ refractory hematological malignancies. ClinicalTrials.gov [Internet]. 2022 [acesso 2025 mar 6]. Disponível em: https://clinicaltrials.gov/study/NCT05528887 73.

Fondazione Matilde Tettamanti Menotti De Marchi Onlus. Transposon-manipulated allogeneic CARCIKCD19 cells in pediatric and adult patients with r/r ALL post HSCT (CARCIK). ClinicalTrials.gov [Internet]. 2023 [atualizado 2025 maio 6]. Disponível em: https://clinicaltrials.gov/study/NCT03389035

Seattle Children’s Hospital. A pediatric and young adult trial of genetically modified T cells directed against CD19 for relapsed/refractory CD19+ leukemia. ClinicalTrials.gov [Internet]. 2024 [acesso 2025 maio 26]. Disponível em: https://clinicaltrials.gov/study/NCT02028455

Ghorashian S, Lucchini G, Richardson R, et al. CD19/ CD22 targeting with cotransduced CAR T cells to prevent antigen-negative relapse after CAR T-cell therapy for B-cell ALL. Blood. 2024;143(2):118-23. doi: https://doi.org/10.1182/blood.2023020621 DOI: https://doi.org/10.1182/blood.2023020621

Cao XY, Zhang JP, Zhao YL, et al. Analysis benefits of a second Allo-HSCT after CAR-T cell therapy in patients with relapsed/refractory B-cell acute lymphoblastic leukemia who relapsed after transplant. Front. Immunol. 2023;14:1191382. doi: https://doi.org/10.3389/fimmu.2023.1191382 DOI: https://doi.org/10.3389/fimmu.2023.1191382

Mazinani M, Rahbarizadeh F. CAR-T cell potency: from structural elements to vector backbone components. Biomark Res. 2022;10(70):1-24. doi: https://doi.org/10.1186/s40364-022-00417-w DOI: https://doi.org/10.1186/s40364-022-00417-w

Xu J, Luo W, Li C, et al. Targeting CD22 for B-cell hematologic malignancies. Exp Hematol Oncol. 2023;12(1):90. doi: https://doi.org/10.1186/s40164-023-00454-7 DOI: https://doi.org/10.1186/s40164-023-00454-7

Cordoba S, Onuoha S, Thomas S. et al. CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial. Nat Med. 2021;27:1797-805. doi: https://doi.org/10.1038/s41591-021-01497-1 DOI: https://doi.org/10.1038/s41591-021-01497-1

Published

2025-07-22

How to Cite

1.
Elias G dos S. New Strategies in CAR T-Cell Immunotherapy for Patients with Acute Lymphoblastic Leukemia: Investigating the Rise of the Therapeutic Approach. Rev. Bras. Cancerol. [Internet]. 2025 Jul. 22 [cited 2025 Dec. 5];71(3):e-165017. Available from: https://rbc.inca.gov.br/index.php/revista/article/view/5017

Issue

Section

LITERATURE REVIEW