Vulnerability and Protection: Integrative Literature Review on the Contrasting Risk of Leukemias and Solid Tumors in Down Syndrome
DOI:
https://doi.org/10.32635/2176-9745.RBC.2026v72n1.5334Keywords:
Down syndrome/complications, Leukemia/epidemiology, Neoplasms/genetics, Genetic Predisposition to DiseaseAbstract
Introduction: Down syndrome (DS), characterized by trisomy of chromosome 21, is associated with an increased risk of leukemia and a reduced incidence of solid tumors. Objective: To analyze the epidemiological patterns and molecular mechanisms that explain the increased susceptibility to leukemias and protection against solid neoplasms in individuals with DS. Method: Seventeen studies with different designs were selected, totaling 62,121 individuals. Result: The overall prevalence of cancer was 2.02%, with 1.18% of leukemias (predominantly AML and ALL) and 0.22% of solid tumors (testicular cancer being the most common). The standardized incidence ratio (SIR) was low for solid tumors (0.69), with especially low values for lung (0.10), skin (0.24), and breast (0.35). In contrast, there was an increased risk of testicular (SIR: 4.28) and liver (SIR: 3.72) cancer. From a molecular point of view, the GATA1 mutation was found in virtually all cases of AML in DS, while increased expression of tumor suppressor genes, such as RCAN1 and DYRK1A, may explain the lower incidence of solid tumors in this population. Conclusion: It is concluded that DS presents a unique oncological profile, with a specific predisposition to leukemias in childhood and protection against solid neoplasms, especially in adulthood.
Downloads
References
Rabin KR, Whitlock JA. Malignancy in children with trisomy 21. Oncologist. 2009;14(2):164-73. doi: https://doi.org/10.1634/theoncologist.2008-0217 DOI: https://doi.org/10.1634/theoncologist.2008-0217
Hasaart KAL, Bertrums EJM, Manders F, et al. Increased risk of leukaemia in children with down syndrome: a somatic evolutionary view. 2021;23:e5. doi: https://doi.org/10.1017/erm.2021.6 DOI: https://doi.org/10.1017/erm.2021.6
Baruchel A, Bourquin JP, Crispino J, et al. Down syndrome and leukemia: from basic mechanisms to clinical advances. Haematologica. 2023;108(10). doi: https://doi.org/10.3324/haematol.2023.283225 DOI: https://doi.org/10.3324/haematol.2023.283225
Fosu K, Quarshie JT, Sarpong KAN, et al. Inverse Comorbidity between down syndrome and solid tumors: insights from in silico analyses of down syndrome critical region genes. Genes (Basel). 2023;14(4):800. doi: https://doi.org/10.3390/genes14040800 DOI: https://doi.org/10.3390/genes14040800
Mason NR, Cahill H, Diamond Y, et al. Down syndrome-associated leukaemias: current evidence and challenges. Ther Adv Hematol. 2024;15:20406207241257901 doi: https://doi.org/10.1177/20406207241257901 DOI: https://doi.org/10.1177/20406207241257901
Taherifard E, Taherifard E, Bouffet E, et al. Solid tumor incidence and patterns in individuals with down syndrome: a systematic review and meta-analysis. Pediatr Blood Cancer. 2025;72(8):e31775. doi: https://doi.org/10.1002/pbc.31775 DOI: https://doi.org/10.1002/pbc.31775
Clemente AB, Ferreira BA, Carneiro LMF, et al. Risco aumentado de leucemia em crianças com síndrome de Down: mini revisão integrativa. RESU. 2024;12(supl2):179-84.
Gu Z, Izraeli S. All about down syndrome all. Blood. 2023;142(2):126-8. doi: https://doi.org/10.1182/blood.2023020508 DOI: https://doi.org/10.1182/blood.2023020508
Barwe SP, Kolb EA, Gopalakrishnapillai A. Down syndrome and leukemia: an insight into the disease biology and current treatment options. Blood Rev. 2024;64:101154. doi: https://doi.org/10.1016/j.blre.2023.101154 DOI: https://doi.org/10.1016/j.blre.2023.101154
Lupo PJ, Schraw JM, Desrosiers TA, et al. Association between birth defects and cancer risk among children and adolescents in a population-based assessment of 10 million live births. JAMA Oncology. 2019;5(8):1150-8. doi: https://doi.org/10.1001/jamaoncol.2019.1215 DOI: https://doi.org/10.1001/jamaoncol.2019.1215
Sussan TE, Yang A, Li F, et al. Trisomy represses ApcMin-mediated tumours in mouse models of down's syndrome. Nature. 2008;451:73-5. doi: https://doi.org/10.1038/nature06446 DOI: https://doi.org/10.1038/nature06446
Whittemore R, Knafl K. The integrative review: update methodology. J Adv Nurs. 2005;52(5):546-53. doi: https://doi.org/10.1111/j.1365-2648.2005.03621.x DOI: https://doi.org/10.1111/j.1365-2648.2005.03621.x
Conselho Nacional de Saúde (BR). Resolução n° 510, de 7 de abril de 2016. Dispõe sobre as normas aplicáveis a pesquisas em Ciências Humanas e Sociais cujos procedimentos metodológicos envolvam a utilização de dados diretamente obtidos com os participantes ou de informações identificáveis ou que possam acarretar riscos maiores do que os existentes na vida cotidiana, na forma definida nesta Resolução [Internet]. Diário Oficial da União, Brasília, DF. 2016 maio 24 [acesso 2025 abr 7]; Seção 1:44. Disponível em: http://bvsms.saude.gov.br/bvs/saudelegis/cns/2016/res0510_07_04_2016.html
Satgé D, Seidel MG. The pattern of malignancies in down syndrome and its potential context with the immune system. Front. Immunol. 2018;9(3058):1-6. doi: https://doi.org/10.3389/fimmu.2018.03058 DOI: https://doi.org/10.3389/fimmu.2018.03058
Page MJ, Moher D, Bossuyt PM, et al. Prisma 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372:n160. doi: https://doi.org/10.1136/bmj.n160 DOI: https://doi.org/10.1136/bmj.n160
Moretti NR, Silva ABN, Guimarães LV, et al. The prevalence of solid tumors and hematologic malignancies among patients with down syndrome: a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2025;205:104558. doi: https://doi.org/10.1016/j.critrevonc.2024.104558 DOI: https://doi.org/10.1016/j.critrevonc.2024.104558
Hasle H, Friedman JM, Olsen JH, et al. Low risk of solid tumors in persons with Down syndrome. Genet Med. 2016;18(11):1151-7. doi: https://doi.org/10.1038/gim.2016.23 DOI: https://doi.org/10.1038/gim.2016.23
Hitzler JK, Cheung J, Li Y, et al. GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of down syndrome. Br J Haematol. 2003;101(11):4301-4. doi: https://doi.org/10.1182/blood-2003-01-0013 DOI: https://doi.org/10.1182/blood-2003-01-0013
Baek KH, Zaslavsky A, Lynch RC, et al. Down’s syndrome suppression of tumour growth and the role of the calcineurin inhibitor RCAN1. Nature. 2009;459(7250):1126-30. doi: https://doi.org/10.1038/nature08062 DOI: https://doi.org/10.1038/nature08062
Krieg S, Krieg A, Loosen SH, et al. Risks of leukaemia and solid tumours in individuals with Down’s syndrome. Cancers. 2024;16(6):1103. doi: https://doi.org/10.3390/cancers16061103 DOI: https://doi.org/10.3390/cancers16061103
Malinge S, Bliss-Moreau M, Kirsammer G, et al. Increased dosage of the chromosome 21 ortholog dyrk1a promotes megakaryoblastic leukemia in a murine model of down syndrome. J Clin Invest. 2012;122(3):948-62. doi: https://doi.org/10.1172/jci60455 DOI: https://doi.org/10.1172/JCI60455
Published
How to Cite
Issue
Section
License
Os direitos morais e intelectuais dos artigos pertencem aos respectivos autores, que concedem à RBC o direito de publicação.

This work is licensed under a Creative Commons Attribution 4.0 International License.