Identificación de MicroARNs Asociados al Diagnóstico y Pronóstico del Colangiocarcinoma
DOI:
https://doi.org/10.32635/2176-9745.RBC.2026v72n1.5375Palabras clave:
Neoplasias Hepáticas/diagnóstico, Colangiocarcinoma/diagnóstico, MicroARNs, Pronóstico, Biología Computacional/estadística & datos numéricosResumen
Introducción: El colangiocarcinoma (CHOL) es una neoplasia maligna del epitelio biliar y constituye la segunda forma más común de cáncer hepático. Su alta agresividad y diagnóstico tardío dificultan la implementación de terapias eficaces. La falta de biomarcadores pronósticos confiables también impide un manejo clínico adecuado. En este contexto, los microARN (miARN) surgen como reguladores postranscripcionales de la expresión génica, con potencial diagnóstico y pronóstico en diversos tumores. Objetivo: Identificar los principales miARNs asociados al diagnóstico y pronóstico del CHOL, con énfasis en la metástasis ganglionar, mediante análisis bioinformático de datos del The Cancer Genome Atlas (TCGA). Método: Estudio transversal, descriptivo y exploratorio basado en bioinformática. Se analizaron 45 muestras (36 tumorales y 9 normales) extraídas del TCGA. Se utilizaron las plataformas CancerMIRNome, OncomiR y UALCAN para la selección, filtrado y análisis de la expresión diferencial de miARNs en relación con variables clínicas y demográficas. Resultados: Se identificaron 245 miARNs con significación estadística, de los cuales nueve presentaron asociación con metástasis ganglionar: let-7c-5p, miR-1258, miR-182-5p, miR-183-5p, miR-194-3p, miR-301a-3p, miR-378a-3p, miR-92b-3p y miR-96-5p. El miR-194-3p se destacó por su asociación con todas las variables clínicas analizadas. No se observó una correlación significativa con la supervivencia global de los pacientes. Conclusión: Los miARNs identificados presentan un valor pronóstico potencial en el CHOL, especialmente en la estratificación por metástasis ganglionar. No obstante, se requieren nuevos estudios con validación experimental y análisis funcionales para confirmar su papel en la progresión tumoral del CHOL.
Descargas
Citas
Massarweh NN, El-Serag HB. Epidemiology of hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Cancer Control. 2017;24(3):1073274817729245. doi: https://doi.org/10.1177/1073274817729245 DOI: https://doi.org/10.1177/1073274817729245
Gomes RV. Expressão do receptor do fator de crescimento epidérmico (EGFR) como fator prognóstico no colangiocarcinoma [dissertação na Internet]. Belo Horizonte: Universidade Federal de Minas Gerais; 2016 [acesso 2025 jan 15]. 64 p. Disponível em: http://hdl.handle.net/1843/BUBD-AMNLLH
Banales JM, Cardinale V, Carpino G, et al. Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol. 2016;13(5):261-80. doi: https://doi.org/10.1038/nrgastro.2016.51 DOI: https://doi.org/10.1038/nrgastro.2016.51
Qurashi M, Vithayathil M, Khan SA. Epidemiology of cholangiocarcinoma. Eur J Surg Oncol. 2025;51(2):107064. doi: https://doi.org/10.1016/j.ejso.2023.107064 DOI: https://doi.org/10.1016/j.ejso.2023.107064
Tsung C, Quinn PL, Ejaz A. Management of intrahepatic cholangiocarcinoma: a narrative review. Cancers (Basel). 2024;16(4):739. doi: https://doi.org/10.3390/cancers16040739 DOI: https://doi.org/10.3390/cancers16040739
Maki H, Kawaguchi Y, Nagata R, et al. Conditional recurrence analysis of intrahepatic cholangiocarcinoma: Changes in recurrence rate and survival after recurrence resection by disease-free interval. Hepatol Res. 2023;53(12):1224-34. doi: https://doi.org/10.1111/hepr.13951 DOI: https://doi.org/10.1111/hepr.13951
Brindley PJ, Bachini M, Ilyas SI, et al. Cholangiocarcinoma. Nat Rev Dis Primers. 2021;7(1):65. doi: https://doi.org/10.1038/s41572-021-00300-2 DOI: https://doi.org/10.1038/s41572-021-00300-2
Zhang XF, Xue F, Dong DD, et al. Proposed modification of the eighth edition of the AJCC staging system for intrahepatic cholangiocarcinoma. HPB (Oxford). 2021;23(5):581-591. doi: https://doi.org/10.1016/j.hpb.2020.08.016 DOI: https://doi.org/10.1016/j.hpb.2021.02.009
Magri Júnior JE. Características anatomoclínicas e análise da sobrevida na neoplasia intraductal papilífera dos ductos biliares (IPNB) [dissertação na Internet]. Belo Horizonte: Universidade Federal de Minas Gerais; 2020 [acesso 2025 jan 15]. 45 p. Disponível em: http://hdl.handle.net/1843/46582
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, et al. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234(5):5451-65. doi: https://doi.org/10.1002/jcp.27486 DOI: https://doi.org/10.1002/jcp.27486
Jorge AL, Pereira ER, Oliveira CS, et al. MicroRNAs: understanding their role in gene expression and cancer. Einstein (São Paulo). 2021;19:eRB5996. doi: https://doi.org/10.31744/einstein_journal/2021RB5996 DOI: https://doi.org/10.31744/einstein_journal/2021RB5996
Hill M, Tran N. miRNA interplay: mechanisms and consequences in cancer. Dis Model Mech. 2021;14(4):dmm047662. doi: https://doi.org/10.1242/dmm.047662 DOI: https://doi.org/10.1242/dmm.047662
Di Cosimo S, Appierto V, Pizzamiglio S, et al. Early modulation of circulating microRNAs levels in HER2-positive breast cancer patients treated with trastuzumab-based neoadjuvant therapy. Int J Mol Sci. 2020;21(4):1386. doi: https://doi.org/10.3390/ijms21041386 DOI: https://doi.org/10.3390/ijms21041386
Bautista-Sánchez D, Arriaga-Canon C, Pedroza-Torres A, et al. The promising role of miR-21 as a cancer biomarker and its importance in RNA-based therapeutics. Mol Ther Nucleic Acids. 2020;20:409-20. doi: https://doi.org/10.1016/j.omtn.2020.03.003 DOI: https://doi.org/10.1016/j.omtn.2020.03.003
Hussen BM, Hidayat HJ, Salihi A, et al. MicroRNA: a signature for cancer progression. Biomed Pharmacother. 2021;138:111528. doi: https://doi.org/10.1016/j.biopha.2021.111528 DOI: https://doi.org/10.1016/j.biopha.2021.111528
Liu X, Zhao H, Liu J, et al. Identification of tumor-suppressive miRNAs that target LAT1 expression in cholangiocarcinoma cells. Biochem Biophys Res Commun. 2024;713:1-8. doi: https://doi.org/10.1016/j.bbrc.2024.03.045
The Cancer Genome Atlas Program (TCGA) [Internet]. Bethesda: NIH; 2006 [acesso 2025 set 1]. Disponível em: https://www.cancer.gov/ccg/research/genome-sequencing/tcga
Li R, Qu H, Wang S, et al. CancerMIRNome: an interactive analysis and visualization database for miRNome profiles of human cancer. Nucleic Acids Res. 2022;50(D1):D1139-46. doi: https://doi.org/10.1093/nar/gkab784 DOI: https://doi.org/10.1093/nar/gkab784
OncomiR: WashU pan-cancer miRNome atlas [Internet]. St. Louis (MO): WashU; 2018 [acesso 2025 jul 1]. Disponível em: https://www.oncomir.org
UALCAN: TCGA miRNA analysis portal [Internet]. Birmingham:University of Alabama at Birmingham, Department of Pathology; 2017 [acesso 2025 jul 1]. Disponível em: https://ualcan.path.uab.edu
Conselho Nacional de Saúde (BR). Resolução n° 510, de 7 de abril de 2016. Dispõe sobre as normas aplicáveis a pesquisas em Ciências Humanas e Sociais cujos procedimentos metodológicos envolvam a utilização de dados diretamente obtidos com os participantes ou de informações identificáveis ou que possam acarretar riscos maiores do que os existentes na vida cotidiana, na forma definida nesta Resolução [Internet]. Diário Oficial da União, Brasília, DF. 2016 maio 24 [acesso 2025 abr 7]; Seção 1:44. Disponível em: http://bvsms.saude.gov.br/bvs/saudelegis/cns/2016/res0510_07_04_2016.html
Presidência da República (BR). Lei nº 12.527, de 18 de novembro de 2011. Regula o acesso a informações previsto na Constituição Federal. Diário Oficial da União [Internet], Brasília, DF. 2011 nov 18 [acesso 2025 abr 7]; Edição 221-A; Seção 1:1-4. Disponível em: https://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=18/11/2011&jornal=1000&pagina=1&totalArquivos=12
Alkhazaali-Ali Z, Sahab-Negah S, Boroumand AR, et al. MicroRNA (miRNA) as a biomarker for diagnosis, prognosis, and therapeutics molecules in neurodegenerative disease. Biomed Pharmacother. 2024;177:116899. doi: https://doi.org/10.1016/j.biopha.2024.116899 DOI: https://doi.org/10.1016/j.biopha.2024.116899
He B, Zhao Z, Cai Q, et al. miRNA-based biomarkers, therapies, and resistance in cancer. Int J Biol Sci. 2020;16(14):2628-47. doi: https://doi.org/10.7150/ijbs.47203 DOI: https://doi.org/10.7150/ijbs.47203
Xie Y, Zhang H, Guo XJ, et al. Let-7c inhibits cholangiocarcinoma growth but promotes tumor cell invasion and growth at extrahepatic sites. Cell Death Dis. 2018;9(2):249. doi: https://doi.org/10.1038/s41419-018-0286-6
Shu L, Li X, Liu Z, et al. Bile exosomal miR-182/183-5p increases cholangiocarcinoma stemness and progression by targeting HPGD and increasing PGE2 generation. Hepatology. 2024;79(2):307-22. doi: https://doi.org/10.1097/HEP.0000000000000437 DOI: https://doi.org/10.1097/HEP.0000000000000437
Gao J, Dai C, Yu X, et al. Upregulated microRNA-194 impairs stemness of cholangiocarcinoma cells through the Rho pathway via inhibition of ECT2. J Cell Biochem. 2020;121(10):4239-50. doi: https://doi.org/10.1002/jcb.29648 DOI: https://doi.org/10.1002/jcb.29648
Zhou Z, Ma J. miR-378 serves as a prognostic biomarker in cholangiocarcinoma and promotes tumor proliferation, migration, and invasion. Cancer Biomark. 2019;24(2):173-81. doi: https://doi.org/10.3233/CBM-181980 DOI: https://doi.org/10.3233/CBM-181980
Han HS, Kim MJ, Han JH, et al. Bile-derived circulating extracellular miR-30d-5p and miR-92a-3p as potential biomarkers for cholangiocarcinoma. Hepatobiliary Pancreat Dis Int. 2020;19(1):41-50. doi: https://doi.org/10.1016/j.hbpd.2019.10.009 DOI: https://doi.org/10.1016/j.hbpd.2019.10.009
Yin X, Chai Z, Sun X, et al. Overexpression of microRNA-96 is associated with poor prognosis and promotes proliferation, migration and invasion in cholangiocarcinoma cells via MTSS1. Exp Ther Med. 2020;19(4):2757-65. doi: https://doi.org/10.3892/etm.2020.8502 DOI: https://doi.org/10.3892/etm.2020.8502
Lin W, Lin J, Li J, et al. Kindlin-2-miR-1258-TCF4 feedback loop promotes hepatocellular carcinoma invasion and metastasis. J Gastroenterol. 2022;57(5):372-86. doi: https://doi.org/10.1007/s00535-022-01866-8 DOI: https://doi.org/10.1007/s00535-022-01866-8
Peng X, Yang R, Wang C, et al. The YTHDF3-DT/miR-301a-3p /INHBA axis attenuates autophagy-dependent ferroptosis in lung adenocarcinoma. Cancer Lett. 2025;613:217503. doi: https://doi.org/10.1016/j.canlet.2025.217503 DOI: https://doi.org/10.1016/j.canlet.2025.217503
Xie Y, Zhang H, Guo XJ, et al. Let-7c inhibits cholangiocarcinoma growth but promotes tumor cell invasion and growth at extrahepatic sites. Cell Death Dis. 2018;9:249. doi: https://doi.org/10.1038/s41419-018-0286-6 DOI: https://doi.org/10.1038/s41419-018-0286-6
Shi J, Chen P, Sun J, et al. MicroRNA-1258: an invasion and metastasis regulator that targets heparanase in gastric cancer. Oncol Lett. 2017;13(5):3739-3745. doi: https://doi.org/10.3892/ol.2017.5886 Erratum in: Oncol Lett. 2021;22(6):842. doi: https://doi.org/10.3892/ol.2021.13103 DOI: https://doi.org/10.3892/ol.2021.13103
Yacob AM, Muhamad NA, Chang KM, et al. Hsa-miR-181a-5p, hsa-miR-182-5p, and hsa-miR-26a-5p as potential biomarkers for BCR-ABL1 among adult chronic myeloid leukemia treated with tyrosine kinase inhibitors at the molecular response. BMC Cancer. 2022;22(1):332. doi: https://doi.org/10.1186/s12885-022-09396-5 DOI: https://doi.org/10.1186/s12885-022-09396-5
Elias K, Smyczynska U, Stawiski K, et al. Identification of BRCA1/2 mutation female carriers using circulating microRNA profiles. Nat Commun. 2023;14(1):3350. doi: https://doi.org/10.1038/s41467-023-38925-4 DOI: https://doi.org/10.1038/s41467-023-38925-4
Oliveira-Rizzo C, Ottati MC, Fort RS, et al. Hsa-miR-183-5p Modulates Cell Adhesion by Repression of ITGB1 Expression in Prostate Cancer. Noncoding RNA. 2022;8(1):11. doi: https://doi.org/10.3390/ncrna8010011 DOI: https://doi.org/10.3390/ncrna8010011
Li M, Xu DM, Lin SB, et al. Transcriptional expressions of hsa-mir-183 predicted target genes as independent indicators for prognosis in bladder urothelial carcinoma. Aging (Albany NY). 2022;14(9):3782-800. doi: https://doi.org/10.18632/aging.204040 DOI: https://doi.org/10.18632/aging.204040
Zhu X, Li D, Yu F, et al. miR-194 inhibits the proliferation, invasion, migration, and enhances the chemosensitivity of non-small cell lung cancer cells by targeting forkhead box A1 protein. Oncotarget. 2016;7(11):13139-52. doi: https://doi.org/10.18632/oncotarget.7545 DOI: https://doi.org/10.18632/oncotarget.7545
Fan F, Chen K, Lu X, et al. Dual targeting of PD-L1 and PD-L2 by PCED1B-AS1 via sponging hsa-miR-194-5p induces immunosuppression in hepatocellular carcinoma. Hepatol Int. 2021;15(2):444-58. doi: https://doi.org/10.1007/s12072-020-10101-6 DOI: https://doi.org/10.1007/s12072-020-10101-6
Cui Z, Wang J, Chen G, et al. The upregulation of CLGN in hepatocellular carcinoma is potentially regulated by hsa-miR-194-3p and associated with patient progression. Front Oncol. 2023;12:1081510. doi: https://doi.org/10.3389/fonc.2022.1081510 DOI: https://doi.org/10.3389/fonc.2022.1081510
Vajen B, Greiwe L, Schäffer V, et al. MicroRNA-192-5p inhibits migration of triple negative breast cancer cells and directly regulates Rho GTPase activating protein 19. Genes Chromosomes Cancer. 2021;60(11):733-42. doi: https://doi.org/10.1002/gcc.22982 DOI: https://doi.org/10.1002/gcc.22982
Wang Y, Huang L, Shan N, et al. Establishing a three-miRNA signature as a prognostic model for colorectal cancer through bioinformatics analysis. Aging (Albany NY). 2021;13(15):19894-907. doi: https://doi.org/10.18632/aging.203400 DOI: https://doi.org/10.18632/aging.203400
Su L, Zhang J, Zhang X, et al. Identification of cell cycle as the critical pathway modulated by exosome-derived microRNAs in gallbladder carcinoma. Med Oncol. 2021;38(12):141. doi: https://doi.org/10.1007/s12032-021-01594-8 DOI: https://doi.org/10.1007/s12032-021-01594-8
Zhang J, Yang Y, Wei Y, et al. Hsa-miR-301a-3p inhibited the killing effect of natural killer cells on non-small cell lung cancer cells by regulating RUNX3. Cancer Biomark. 2023;37(4):249-59. doi: https://doi.org/10.3233/cbm-220469 DOI: https://doi.org/10.3233/CBM-220469
Öztemur Islakoğlu Y, Noyan S, Gür Dedeoğlu B. Hsa-miR-301a- and SOX10-dependent miRNA-TF-mRNA regulatory circuits in breast cancer. Turk J Biol. 2018;42(2):103-12. doi: https://doi.org/10.3906/biy-1708-17 DOI: https://doi.org/10.3906/biy-1708-17
Pliakou E, Lampropoulou DI, Dovrolis N, et al. Circulating miRNA expression profiles and machine learning models in association with response to irinotecan-based treatment in metastatic colorectal cancer. Int J Mol Sci. 2022;24(1):46. doi: https://doi.org/10.3390/ijms24010046 DOI: https://doi.org/10.3390/ijms24010046
Xu X, Li Y, Liu G, et al. MiR-378a-3p acts as a tumor suppressor in gastric cancer via directly targeting RAB31 and inhibiting the Hedgehog pathway proteins GLI1/2. Cancer Biol Med. 2022;19(12):1662-82. doi: https://doi.org/10.20892/j.issn.2095-3941.2022.0337 DOI: https://doi.org/10.20892/j.issn.2095-3941.2022.0337
Zhang Y, Ding N, Xie S, et al. Identification of important extracellular vesicle RNA molecules related to sperm motility and prostate cancer. Extracell Vesicles Circ Nucleic Acids. 2021;2(2):104-26. doi: https://doi.org/10.20517/evcna.2021.02 DOI: https://doi.org/10.20517/evcna.2021.02
Deng R, Cui X, Dong Y, et al. Construction of circRNA-Based ceRNA network to reveal the role of circRNAs in the progression and prognosis of hepatocellular carcinoma. Front Genet. 2021;12:626764. doi: https://doi.org/10.3389/fgene.2021.626764 DOI: https://doi.org/10.3389/fgene.2021.626764
Manzanarez-Ozuna E, Flores DL, Gutiérrez-López E, et al. Model based on GA and DNN for prediction of mRNA-Smad7 expression regulated by miRNAs in breast cancer. Theor Biol Med Model. 2018;15(1):24. doi: https://doi.org/10.1186/s12976-018-0095-8 DOI: https://doi.org/10.1186/s12976-018-0095-8
Hong Y, Liang H, Uzair-ur-Rehman, et al. miR-96 promotes cell proliferation, migration and invasion by targeting PTPN9 in breast cancer. Sci Rep. 2016;6:37421. doi: https://doi.org/10.1038/srep37421 DOI: https://doi.org/10.1038/srep37421
Mendes DCC, Calvano Filho CMC, Garcia N, et al. Could FOXO3a, miR-96-5p, and miR-182-5p be useful for Brazilian women with luminal a and triple-negative breast cancers prognosis and target therapy? Clinics (Sao Paulo). 2023;78:e100155. doi: https://doi.org/10.1016/j.clinsp.2022.100155 DOI: https://doi.org/10.1016/j.clinsp.2022.100155
Kandhavelu J, Subramanian K, Khan A, et al. Computational analysis of miRNA and their gene targets significantly involved in colorectal cancer progression. Microrna. 2019;8(1):68-75. doi: https://doi.org/10.2174/2211536607666180803100246 DOI: https://doi.org/10.2174/2211536607666180803100246
Gujrati H, Ha S, Wang BD. Deregulated microRNAs involved in prostate cancer aggressiveness and treatment resistance mechanisms. Cancers (Basel). 2023;15(12):3140. doi: https://doi.org/10.3390/cancers15123140 DOI: https://doi.org/10.3390/cancers15123140
Ma Y, Liang AJ, Fan YP, et al. Dysregulation and functional roles of miR-183-96-182 cluster in cancer cell proliferation, invasion and metastasis. Oncotarget. 2016;7(27):42805-25. doi: https://doi.org/10.18632/oncotarget.8715 DOI: https://doi.org/10.18632/oncotarget.8715
Zheng Y, Sukocheva O, Tse E, et al. MicroRNA-183 cluster: a promising biomarker and therapeutic target in gastrointestinal malignancies. Am J Cancer Res [Internet]. 2023 [acesso 2025 nov 17];13(12):6147-75. Disponível em: https://pubmed.ncbi.nlm.nih.gov/38187051/
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Os direitos morais e intelectuais dos artigos pertencem aos respectivos autores, que concedem à RBC o direito de publicação.

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.