Identificação de MicroRNA Associados ao Diagnóstico e Prognóstico do Colangiocarcinoma

Autores

DOI:

https://doi.org/10.32635/2176-9745.RBC.2026v72n1.5375

Palavras-chave:

Neoplasias Hepáticas/diagnóstico, Colangiocarcinoma/diagnóstico, MicroRNAs, Prognóstico, Biologia Computacional/estatística & dados numéricos

Resumo

Introdução: O colangiocarcinoma (CHOL) é uma neoplasia maligna do epitélio biliar, sendo a segunda principal forma de câncer hepático. Sua alta agressividade e diagnóstico tardio dificultam terapias eficazes. A falta de biomarcadores prognósticos confiáveis também impede o manejo clínico adequado. Nesse contexto, os microRNA (miRNA) surgem como reguladores pós-transcricionais da expressão gênica, com potencial diagnóstico e prognóstico em diversos tumores. Objetivo: Identificar os principais miRNA associados ao diagnóstico e prognóstico do CHOL, com enfoque especial na metástase linfonodal, por meio da análise bioinformática de dados obtidos do The Cancer Genome Atlas (TCGA). Método: Estudo transversal, descritivo e exploratório baseado em ferramentas de bioinformática. Foram analisadas 45 amostras (36 tumorais e 9 normais) provenientes do TCGA. Para triagem, filtragem e análise da expressão diferencial dos miRNAs em relação às variáveis clínicas e demográficas, utilizaram-se as plataformas CancerMIRNome, OncomiR e UALCAN. Resultados: Identificaram-se 245 miRNA com significância estatística, dos quais 9 demonstraram associação com a presença de metástase linfonodal: let-7c-5p, miR-1258, miR-182-5p, miR-183-5p, miR-194-3p, miR-301a-3p, miR-378a-3p, miR-92b-3p e miR-96-5p. O miR-194-3p destacou-se por sua correlação com todas as variáveis clínicas avaliadas. Não foi observada associação estatisticamente significativa entre os miRNA e a sobrevida global dos pacientes. Conclusão: Os miRNA identificados apresentam potencial para serem utilizados como biomarcadores prognósticos no CHOL, especialmente na estratificação dos pacientes com metástase linfonodal. Entretanto, são necessários estudos adicionais com validação experimental e análises funcionais para confirmar o papel desses miRNAs na progressão tumoral do CHOL.

Downloads

Não há dados estatísticos.

Referências

Massarweh NN, El-Serag HB. Epidemiology of hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Cancer Control. 2017;24(3):1073274817729245. doi: https://doi.org/10.1177/1073274817729245 DOI: https://doi.org/10.1177/1073274817729245

Gomes RV. Expressão do receptor do fator de crescimento epidérmico (EGFR) como fator prognóstico no colangiocarcinoma [dissertação na Internet]. Belo Horizonte: Universidade Federal de Minas Gerais; 2016 [acesso 2025 jan 15]. 64 p. Disponível em: http://hdl.handle.net/1843/BUBD-AMNLLH

Banales JM, Cardinale V, Carpino G, et al. Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol. 2016;13(5):261-80. doi: https://doi.org/10.1038/nrgastro.2016.51 DOI: https://doi.org/10.1038/nrgastro.2016.51

Qurashi M, Vithayathil M, Khan SA. Epidemiology of cholangiocarcinoma. Eur J Surg Oncol. 2025;51(2):107064. doi: https://doi.org/10.1016/j.ejso.2023.107064 DOI: https://doi.org/10.1016/j.ejso.2023.107064

Tsung C, Quinn PL, Ejaz A. Management of intrahepatic cholangiocarcinoma: a narrative review. Cancers (Basel). 2024;16(4):739. doi: https://doi.org/10.3390/cancers16040739 DOI: https://doi.org/10.3390/cancers16040739

Maki H, Kawaguchi Y, Nagata R, et al. Conditional recurrence analysis of intrahepatic cholangiocarcinoma: Changes in recurrence rate and survival after recurrence resection by disease-free interval. Hepatol Res. 2023;53(12):1224-34. doi: https://doi.org/10.1111/hepr.13951 DOI: https://doi.org/10.1111/hepr.13951

Brindley PJ, Bachini M, Ilyas SI, et al. Cholangiocarcinoma. Nat Rev Dis Primers. 2021;7(1):65. doi: https://doi.org/10.1038/s41572-021-00300-2 DOI: https://doi.org/10.1038/s41572-021-00300-2

Zhang XF, Xue F, Dong DD, et al. Proposed modification of the eighth edition of the AJCC staging system for intrahepatic cholangiocarcinoma. HPB (Oxford). 2021;23(5):581-591. doi: https://doi.org/10.1016/j.hpb.2020.08.016 DOI: https://doi.org/10.1016/j.hpb.2021.02.009

Magri Júnior JE. Características anatomoclínicas e análise da sobrevida na neoplasia intraductal papilífera dos ductos biliares (IPNB) [dissertação na Internet]. Belo Horizonte: Universidade Federal de Minas Gerais; 2020 [acesso 2025 jan 15]. 45 p. Disponível em: http://hdl.handle.net/1843/46582

Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, et al. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234(5):5451-65. doi: https://doi.org/10.1002/jcp.27486 DOI: https://doi.org/10.1002/jcp.27486

Jorge AL, Pereira ER, Oliveira CS, et al. MicroRNAs: understanding their role in gene expression and cancer. Einstein (São Paulo). 2021;19:eRB5996. doi: https://doi.org/10.31744/einstein_journal/2021RB5996 DOI: https://doi.org/10.31744/einstein_journal/2021RB5996

Hill M, Tran N. miRNA interplay: mechanisms and consequences in cancer. Dis Model Mech. 2021;14(4):dmm047662. doi: https://doi.org/10.1242/dmm.047662 DOI: https://doi.org/10.1242/dmm.047662

Di Cosimo S, Appierto V, Pizzamiglio S, et al. Early modulation of circulating microRNAs levels in HER2-positive breast cancer patients treated with trastuzumab-based neoadjuvant therapy. Int J Mol Sci. 2020;21(4):1386. doi: https://doi.org/10.3390/ijms21041386 DOI: https://doi.org/10.3390/ijms21041386

Bautista-Sánchez D, Arriaga-Canon C, Pedroza-Torres A, et al. The promising role of miR-21 as a cancer biomarker and its importance in RNA-based therapeutics. Mol Ther Nucleic Acids. 2020;20:409-20. doi: https://doi.org/10.1016/j.omtn.2020.03.003 DOI: https://doi.org/10.1016/j.omtn.2020.03.003

Hussen BM, Hidayat HJ, Salihi A, et al. MicroRNA: a signature for cancer progression. Biomed Pharmacother. 2021;138:111528. doi: https://doi.org/10.1016/j.biopha.2021.111528 DOI: https://doi.org/10.1016/j.biopha.2021.111528

Liu X, Zhao H, Liu J, et al. Identification of tumor-suppressive miRNAs that target LAT1 expression in cholangiocarcinoma cells. Biochem Biophys Res Commun. 2024;713:1-8. doi: https://doi.org/10.1016/j.bbrc.2024.03.045

The Cancer Genome Atlas Program (TCGA) [Internet]. Bethesda: NIH; 2006 [acesso 2025 set 1]. Disponível em: https://www.cancer.gov/ccg/research/genome-sequencing/tcga

Li R, Qu H, Wang S, et al. CancerMIRNome: an interactive analysis and visualization database for miRNome profiles of human cancer. Nucleic Acids Res. 2022;50(D1):D1139-46. doi: https://doi.org/10.1093/nar/gkab784 DOI: https://doi.org/10.1093/nar/gkab784

OncomiR: WashU pan-cancer miRNome atlas [Internet]. St. Louis (MO): WashU; 2018 [acesso 2025 jul 1]. Disponível em: https://www.oncomir.org

UALCAN: TCGA miRNA analysis portal [Internet]. Birmingham:University of Alabama at Birmingham, Department of Pathology; 2017 [acesso 2025 jul 1]. Disponível em: https://ualcan.path.uab.edu

Conselho Nacional de Saúde (BR). Resolução n° 510, de 7 de abril de 2016. Dispõe sobre as normas aplicáveis a pesquisas em Ciências Humanas e Sociais cujos procedimentos metodológicos envolvam a utilização de dados diretamente obtidos com os participantes ou de informações identificáveis ou que possam acarretar riscos maiores do que os existentes na vida cotidiana, na forma definida nesta Resolução [Internet]. Diário Oficial da União, Brasília, DF. 2016 maio 24 [acesso 2025 abr 7]; Seção 1:44. Disponível em: http://bvsms.saude.gov.br/bvs/saudelegis/cns/2016/res0510_07_04_2016.html

Presidência da República (BR). Lei nº 12.527, de 18 de novembro de 2011. Regula o acesso a informações previsto na Constituição Federal. Diário Oficial da União [Internet], Brasília, DF. 2011 nov 18 [acesso 2025 abr 7]; Edição 221-A; Seção 1:1-4. Disponível em: https://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=18/11/2011&jornal=1000&pagina=1&totalArquivos=12

Alkhazaali-Ali Z, Sahab-Negah S, Boroumand AR, et al. MicroRNA (miRNA) as a biomarker for diagnosis, prognosis, and therapeutics molecules in neurodegenerative disease. Biomed Pharmacother. 2024;177:116899. doi: https://doi.org/10.1016/j.biopha.2024.116899 DOI: https://doi.org/10.1016/j.biopha.2024.116899

He B, Zhao Z, Cai Q, et al. miRNA-based biomarkers, therapies, and resistance in cancer. Int J Biol Sci. 2020;16(14):2628-47. doi: https://doi.org/10.7150/ijbs.47203 DOI: https://doi.org/10.7150/ijbs.47203

Xie Y, Zhang H, Guo XJ, et al. Let-7c inhibits cholangiocarcinoma growth but promotes tumor cell invasion and growth at extrahepatic sites. Cell Death Dis. 2018;9(2):249. doi: https://doi.org/10.1038/s41419-018-0286-6

Shu L, Li X, Liu Z, et al. Bile exosomal miR-182/183-5p increases cholangiocarcinoma stemness and progression by targeting HPGD and increasing PGE2 generation. Hepatology. 2024;79(2):307-22. doi: https://doi.org/10.1097/HEP.0000000000000437 DOI: https://doi.org/10.1097/HEP.0000000000000437

Gao J, Dai C, Yu X, et al. Upregulated microRNA-194 impairs stemness of cholangiocarcinoma cells through the Rho pathway via inhibition of ECT2. J Cell Biochem. 2020;121(10):4239-50. doi: https://doi.org/10.1002/jcb.29648 DOI: https://doi.org/10.1002/jcb.29648

Zhou Z, Ma J. miR-378 serves as a prognostic biomarker in cholangiocarcinoma and promotes tumor proliferation, migration, and invasion. Cancer Biomark. 2019;24(2):173-81. doi: https://doi.org/10.3233/CBM-181980 DOI: https://doi.org/10.3233/CBM-181980

Han HS, Kim MJ, Han JH, et al. Bile-derived circulating extracellular miR-30d-5p and miR-92a-3p as potential biomarkers for cholangiocarcinoma. Hepatobiliary Pancreat Dis Int. 2020;19(1):41-50. doi: https://doi.org/10.1016/j.hbpd.2019.10.009 DOI: https://doi.org/10.1016/j.hbpd.2019.10.009

Yin X, Chai Z, Sun X, et al. Overexpression of microRNA-96 is associated with poor prognosis and promotes proliferation, migration and invasion in cholangiocarcinoma cells via MTSS1. Exp Ther Med. 2020;19(4):2757-65. doi: https://doi.org/10.3892/etm.2020.8502 DOI: https://doi.org/10.3892/etm.2020.8502

Lin W, Lin J, Li J, et al. Kindlin-2-miR-1258-TCF4 feedback loop promotes hepatocellular carcinoma invasion and metastasis. J Gastroenterol. 2022;57(5):372-86. doi: https://doi.org/10.1007/s00535-022-01866-8 DOI: https://doi.org/10.1007/s00535-022-01866-8

Peng X, Yang R, Wang C, et al. The YTHDF3-DT/miR-301a-3p /INHBA axis attenuates autophagy-dependent ferroptosis in lung adenocarcinoma. Cancer Lett. 2025;613:217503. doi: https://doi.org/10.1016/j.canlet.2025.217503 DOI: https://doi.org/10.1016/j.canlet.2025.217503

Xie Y, Zhang H, Guo XJ, et al. Let-7c inhibits cholangiocarcinoma growth but promotes tumor cell invasion and growth at extrahepatic sites. Cell Death Dis. 2018;9:249. doi: https://doi.org/10.1038/s41419-018-0286-6 DOI: https://doi.org/10.1038/s41419-018-0286-6

Shi J, Chen P, Sun J, et al. MicroRNA-1258: an invasion and metastasis regulator that targets heparanase in gastric cancer. Oncol Lett. 2017;13(5):3739-3745. doi: https://doi.org/10.3892/ol.2017.5886 Erratum in: Oncol Lett. 2021;22(6):842. doi: https://doi.org/10.3892/ol.2021.13103 DOI: https://doi.org/10.3892/ol.2021.13103

Yacob AM, Muhamad NA, Chang KM, et al. Hsa-miR-181a-5p, hsa-miR-182-5p, and hsa-miR-26a-5p as potential biomarkers for BCR-ABL1 among adult chronic myeloid leukemia treated with tyrosine kinase inhibitors at the molecular response. BMC Cancer. 2022;22(1):332. doi: https://doi.org/10.1186/s12885-022-09396-5 DOI: https://doi.org/10.1186/s12885-022-09396-5

Elias K, Smyczynska U, Stawiski K, et al. Identification of BRCA1/2 mutation female carriers using circulating microRNA profiles. Nat Commun. 2023;14(1):3350. doi: https://doi.org/10.1038/s41467-023-38925-4 DOI: https://doi.org/10.1038/s41467-023-38925-4

Oliveira-Rizzo C, Ottati MC, Fort RS, et al. Hsa-miR-183-5p Modulates Cell Adhesion by Repression of ITGB1 Expression in Prostate Cancer. Noncoding RNA. 2022;8(1):11. doi: https://doi.org/10.3390/ncrna8010011 DOI: https://doi.org/10.3390/ncrna8010011

Li M, Xu DM, Lin SB, et al. Transcriptional expressions of hsa-mir-183 predicted target genes as independent indicators for prognosis in bladder urothelial carcinoma. Aging (Albany NY). 2022;14(9):3782-800. doi: https://doi.org/10.18632/aging.204040 DOI: https://doi.org/10.18632/aging.204040

Zhu X, Li D, Yu F, et al. miR-194 inhibits the proliferation, invasion, migration, and enhances the chemosensitivity of non-small cell lung cancer cells by targeting forkhead box A1 protein. Oncotarget. 2016;7(11):13139-52. doi: https://doi.org/10.18632/oncotarget.7545 DOI: https://doi.org/10.18632/oncotarget.7545

Fan F, Chen K, Lu X, et al. Dual targeting of PD-L1 and PD-L2 by PCED1B-AS1 via sponging hsa-miR-194-5p induces immunosuppression in hepatocellular carcinoma. Hepatol Int. 2021;15(2):444-58. doi: https://doi.org/10.1007/s12072-020-10101-6 DOI: https://doi.org/10.1007/s12072-020-10101-6

Cui Z, Wang J, Chen G, et al. The upregulation of CLGN in hepatocellular carcinoma is potentially regulated by hsa-miR-194-3p and associated with patient progression. Front Oncol. 2023;12:1081510. doi: https://doi.org/10.3389/fonc.2022.1081510 DOI: https://doi.org/10.3389/fonc.2022.1081510

Vajen B, Greiwe L, Schäffer V, et al. MicroRNA-192-5p inhibits migration of triple negative breast cancer cells and directly regulates Rho GTPase activating protein 19. Genes Chromosomes Cancer. 2021;60(11):733-42. doi: https://doi.org/10.1002/gcc.22982 DOI: https://doi.org/10.1002/gcc.22982

Wang Y, Huang L, Shan N, et al. Establishing a three-miRNA signature as a prognostic model for colorectal cancer through bioinformatics analysis. Aging (Albany NY). 2021;13(15):19894-907. doi: https://doi.org/10.18632/aging.203400 DOI: https://doi.org/10.18632/aging.203400

Su L, Zhang J, Zhang X, et al. Identification of cell cycle as the critical pathway modulated by exosome-derived microRNAs in gallbladder carcinoma. Med Oncol. 2021;38(12):141. doi: https://doi.org/10.1007/s12032-021-01594-8 DOI: https://doi.org/10.1007/s12032-021-01594-8

Zhang J, Yang Y, Wei Y, et al. Hsa-miR-301a-3p inhibited the killing effect of natural killer cells on non-small cell lung cancer cells by regulating RUNX3. Cancer Biomark. 2023;37(4):249-59. doi: https://doi.org/10.3233/cbm-220469 DOI: https://doi.org/10.3233/CBM-220469

Öztemur Islakoğlu Y, Noyan S, Gür Dedeoğlu B. Hsa-miR-301a- and SOX10-dependent miRNA-TF-mRNA regulatory circuits in breast cancer. Turk J Biol. 2018;42(2):103-12. doi: https://doi.org/10.3906/biy-1708-17 DOI: https://doi.org/10.3906/biy-1708-17

Pliakou E, Lampropoulou DI, Dovrolis N, et al. Circulating miRNA expression profiles and machine learning models in association with response to irinotecan-based treatment in metastatic colorectal cancer. Int J Mol Sci. 2022;24(1):46. doi: https://doi.org/10.3390/ijms24010046 DOI: https://doi.org/10.3390/ijms24010046

Xu X, Li Y, Liu G, et al. MiR-378a-3p acts as a tumor suppressor in gastric cancer via directly targeting RAB31 and inhibiting the Hedgehog pathway proteins GLI1/2. Cancer Biol Med. 2022;19(12):1662-82. doi: https://doi.org/10.20892/j.issn.2095-3941.2022.0337 DOI: https://doi.org/10.20892/j.issn.2095-3941.2022.0337

Zhang Y, Ding N, Xie S, et al. Identification of important extracellular vesicle RNA molecules related to sperm motility and prostate cancer. Extracell Vesicles Circ Nucleic Acids. 2021;2(2):104-26. doi: https://doi.org/10.20517/evcna.2021.02 DOI: https://doi.org/10.20517/evcna.2021.02

Deng R, Cui X, Dong Y, et al. Construction of circRNA-Based ceRNA network to reveal the role of circRNAs in the progression and prognosis of hepatocellular carcinoma. Front Genet. 2021;12:626764. doi: https://doi.org/10.3389/fgene.2021.626764 DOI: https://doi.org/10.3389/fgene.2021.626764

Manzanarez-Ozuna E, Flores DL, Gutiérrez-López E, et al. Model based on GA and DNN for prediction of mRNA-Smad7 expression regulated by miRNAs in breast cancer. Theor Biol Med Model. 2018;15(1):24. doi: https://doi.org/10.1186/s12976-018-0095-8 DOI: https://doi.org/10.1186/s12976-018-0095-8

Hong Y, Liang H, Uzair-ur-Rehman, et al. miR-96 promotes cell proliferation, migration and invasion by targeting PTPN9 in breast cancer. Sci Rep. 2016;6:37421. doi: https://doi.org/10.1038/srep37421 DOI: https://doi.org/10.1038/srep37421

Mendes DCC, Calvano Filho CMC, Garcia N, et al. Could FOXO3a, miR-96-5p, and miR-182-5p be useful for Brazilian women with luminal a and triple-negative breast cancers prognosis and target therapy? Clinics (Sao Paulo). 2023;78:e100155. doi: https://doi.org/10.1016/j.clinsp.2022.100155 DOI: https://doi.org/10.1016/j.clinsp.2022.100155

Kandhavelu J, Subramanian K, Khan A, et al. Computational analysis of miRNA and their gene targets significantly involved in colorectal cancer progression. Microrna. 2019;8(1):68-75. doi: https://doi.org/10.2174/2211536607666180803100246 DOI: https://doi.org/10.2174/2211536607666180803100246

Gujrati H, Ha S, Wang BD. Deregulated microRNAs involved in prostate cancer aggressiveness and treatment resistance mechanisms. Cancers (Basel). 2023;15(12):3140. doi: https://doi.org/10.3390/cancers15123140 DOI: https://doi.org/10.3390/cancers15123140

Ma Y, Liang AJ, Fan YP, et al. Dysregulation and functional roles of miR-183-96-182 cluster in cancer cell proliferation, invasion and metastasis. Oncotarget. 2016;7(27):42805-25. doi: https://doi.org/10.18632/oncotarget.8715 DOI: https://doi.org/10.18632/oncotarget.8715

Zheng Y, Sukocheva O, Tse E, et al. MicroRNA-183 cluster: a promising biomarker and therapeutic target in gastrointestinal malignancies. Am J Cancer Res [Internet]. 2023 [acesso 2025 nov 17];13(12):6147-75. Disponível em: https://pubmed.ncbi.nlm.nih.gov/38187051/

Publicado

2025-12-10

Como Citar

1.
Vidal LA, Brito JSA de, Godoy LL, Albino M de PN, Cardoso MPAVB, Cintra VAS, Silva CE da, Reis ST dos. Identificação de MicroRNA Associados ao Diagnóstico e Prognóstico do Colangiocarcinoma. Rev. Bras. Cancerol. [Internet]. 10º de dezembro de 2025 [citado 13º de dezembro de 2025];72(1):e-175375. Disponível em: https://rbc.inca.gov.br/index.php/revista/article/view/5375

Edição

Seção

ARTIGO ORIGINAL

Artigos mais lidos pelo mesmo(s) autor(es)